symposium articles: A differentiable homotopy to compute Nash equilibria of n -person games
Author
Suggested Citation
Note: Received: December 21, 1999; revised version: December 27, 2000
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Peixuan Li & Chuangyin Dang & P. Jean-Jacques Herings, 2024.
"Computing perfect stationary equilibria in stochastic games,"
Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 78(2), pages 347-387, September.
- Li, Peixuan & Dang, Chuangyin & Herings, P.J.J., 2023. "Computing Perfect Stationary Equilibria in Stochastic Games," Discussion Paper 2023-006, Tilburg University, Center for Economic Research.
- Li, Peixuan & Dang, Chuangyin & Herings, P.J.J., 2023. "Computing Perfect Stationary Equilibria in Stochastic Games," Other publications TiSEM 5b68f5d7-3209-4a1b-924c-6, Tilburg University, School of Economics and Management.
- Dang, Chuangyin & Meng, Xiaoxuan & Talman, Dolf, 2015.
"An Interior-Point Path-Following Method for Computing a Perfect Stationary Point of a Polynomial Mapping on a Polytope,"
Discussion Paper
2015-019, Tilburg University, Center for Economic Research.
- Dang, Chuangyin & Meng, Xiaoxuan & Talman, Dolf, 2015. "An Interior-Point Path-Following Method for Computing a Perfect Stationary Point of a Polynomial Mapping on a Polytope," Other publications TiSEM 07b7a0e7-f814-4ec2-a3a7-e, Tilburg University, School of Economics and Management.
- Yang Zhan & Peixuan Li & Chuangyin Dang, 2020. "A differentiable path-following algorithm for computing perfect stationary points," Computational Optimization and Applications, Springer, vol. 76(2), pages 571-588, June.
- P. Herings & Ronald Peeters, 2005.
"A Globally Convergent Algorithm to Compute All Nash Equilibria for n-Person Games,"
Annals of Operations Research, Springer, vol. 137(1), pages 349-368, July.
- Herings, P.J.J. & Peeters, R.J.A.P., 2002. "A globally convergent algorithm to compute all nash equilibria for n-person games," Research Memorandum 053, Maastricht University, Maastricht Research School of Economics of Technology and Organization (METEOR).
- Yiyin Cao & Yin Chen & Chuangyin Dang, 2024. "A Differentiable Path-Following Method with a Compact Formulation to Compute Proper Equilibria," INFORMS Journal on Computing, INFORMS, vol. 36(2), pages 377-396, March.
- Bich, Philippe & Fixary, Julien, 2024. "Oddness of the number of Nash equilibria: The case of polynomial payoff functions," Games and Economic Behavior, Elsevier, vol. 145(C), pages 510-525.
- Herings, P. Jean-Jacques, 2024.
"Globally and universally convergent price adjustment processes,"
Journal of Mathematical Economics, Elsevier, vol. 113(C).
- Herings, P.J.J., 2024. "Globally and Universally Convergent Price Adjustment Processes," Discussion Paper 2024-001, Tilburg University, Center for Economic Research.
- Herings, P.J.J., 2024. "Globally and Universally Convergent Price Adjustment Processes," Other publications TiSEM 12dc4fc2-19e8-4a8c-b2ff-2, Tilburg University, School of Economics and Management.
- Bich, Philippe & Fixary, Julien, 2022. "Network formation and pairwise stability: A new oddness theorem," Journal of Mathematical Economics, Elsevier, vol. 103(C).
- Herings, P. Jean-Jacques & Zhan, Yang, 2021. "The computation of pairwise stable networks," Research Memorandum 004, Maastricht University, Graduate School of Business and Economics (GSBE).
- Yiyin Cao & Yin Chen & Chuangyin Dang, 2024. "A Variant of the Logistic Quantal Response Equilibrium to Select a Perfect Equilibrium," Journal of Optimization Theory and Applications, Springer, vol. 201(3), pages 1026-1062, June.
- Jean-Jacques Herings, P., 2002. "Universally converging adjustment processes--a unifying approach," Journal of Mathematical Economics, Elsevier, vol. 38(3), pages 341-370, November.
- Dang, Chuangyin & Herings, P. Jean-Jacques & Li, Peixuan, 2020. "An Interior-Point Path-Following Method to Compute Stationary Equilibria in Stochastic Games," Research Memorandum 001, Maastricht University, Graduate School of Business and Economics (GSBE).
- Cao, Yiyin & Dang, Chuangyin & Xiao, Zhongdong, 2022. "A differentiable path-following method to compute subgame perfect equilibria in stationary strategies in robust stochastic games and its applications," European Journal of Operational Research, Elsevier, vol. 298(3), pages 1032-1050.
- Chuangyin Dang & P. Jean-Jacques Herings & Peixuan Li, 2022. "An Interior-Point Differentiable Path-Following Method to Compute Stationary Equilibria in Stochastic Games," INFORMS Journal on Computing, INFORMS, vol. 34(3), pages 1403-1418, May.
- Cao, Yiyin & Dang, Chuangyin, 2022. "A variant of Harsanyi's tracing procedures to select a perfect equilibrium in normal form games," Games and Economic Behavior, Elsevier, vol. 134(C), pages 127-150.
More about this item
Keywords
Computation of equilibria - Noncooperative game theory - Tracing procedure.;JEL classification:
- C63 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Computational Techniques
- C72 - Mathematical and Quantitative Methods - - Game Theory and Bargaining Theory - - - Noncooperative Games
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joecth:v:18:y:2001:i:1:p:159-185. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.