(This abstract was borrowed from another version of this item.)"> (This abstract was borrowed from another version of this item.)">
Nothing Special   »   [go: up one dir, main page]

IDEAS home Printed from https://ideas.repec.org/a/kap/compec/v35y2010i2p127-154.html
   My bibliography  Save this article

How to Maximize the Likelihood Function for a DSGE Model

Author

Listed:
  • Martin Andreasen
Abstract
This paper extends two optimization routines to deal with objective functions for DSGE models. The optimization routines are i) a version of Simulated Annealing developed by Corana, Marchesi & Ridella (1987), and ii) the evolutionary algorithm CMA-ES developed by Hansen, Müller & Koumoutsakos (2003). Following these extensions, we examine the ability of the two routines to maximize the likelihood function for a sequence of test economies. Our results show that the CMA-ES routine clearly outperforms Simulated Annealing in its ability to find the global optimum and in efficiency. With 10 unknown structural parameters in the likelihood function, the CMA-ES routine finds the global optimum in 95% of our test economies compared to 89% for Simulated Annealing. When the number of unknown structural parameters in the likelihood function increases to 20 and 35, then the CMA-ES routine finds the global optimum in 85% and 71% of our test economies, respectively. The corresponding numbers for Simulated Annealing are 70% and 0%.
(This abstract was borrowed from another version of this item.)

Suggested Citation

  • Martin Andreasen, 2010. "How to Maximize the Likelihood Function for a DSGE Model," Computational Economics, Springer;Society for Computational Economics, vol. 35(2), pages 127-154, February.
  • Handle: RePEc:kap:compec:v:35:y:2010:i:2:p:127-154
    DOI: 10.1007/s10614-009-9182-6
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10614-009-9182-6
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10614-009-9182-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Jesús Fernández-Villaverde & Juan F. Rubio-Ramírez, 2007. "Estimating Macroeconomic Models: A Likelihood Approach," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 74(4), pages 1059-1087.
    2. Stepahnie Schmitt-Grohé & Martín Uribe, 2007. "Optimal Inflation Stabilization in a Medium-Scale Macroeconomic Model," Central Banking, Analysis, and Economic Policies Book Series, in: Frederic S. Miskin & Klaus Schmidt-Hebbel & Norman Loayza (Series Editor) & Klaus Schmidt-Hebbel (Se (ed.),Monetary Policy under Inflation Targeting, edition 1, volume 11, chapter 5, pages 125-186, Central Bank of Chile.
    3. David Altig & Lawrence Christiano & Martin Eichenbaum & Jesper Linde, 2011. "Firm-Specific Capital, Nominal Rigidities and the Business Cycle," Review of Economic Dynamics, Elsevier for the Society for Economic Dynamics, vol. 14(2), pages 225-247, April.
    4. Alejandro Justiniano & Giorgio E. Primiceri, 2008. "The Time-Varying Volatility of Macroeconomic Fluctuations," American Economic Review, American Economic Association, vol. 98(3), pages 604-641, June.
    5. Goffe, William L. & Ferrier, Gary D. & Rogers, John, 1994. "Global optimization of statistical functions with simulated annealing," Journal of Econometrics, Elsevier, vol. 60(1-2), pages 65-99.
    6. Frank Smets & Rafael Wouters, 2007. "Shocks and Frictions in US Business Cycles: A Bayesian DSGE Approach," American Economic Review, American Economic Association, vol. 97(3), pages 586-606, June.
    7. Schmitt-Grohe, Stephanie & Uribe, Martin, 2004. "Solving dynamic general equilibrium models using a second-order approximation to the policy function," Journal of Economic Dynamics and Control, Elsevier, vol. 28(4), pages 755-775, January.
    8. Sungbae An & Frank Schorfheide, 2007. "Bayesian Analysis of DSGE Models," Econometric Reviews, Taylor & Francis Journals, vol. 26(2-4), pages 113-172.
    9. Lawrence J. Christiano & Martin Eichenbaum & Charles L. Evans, 2005. "Nominal Rigidities and the Dynamic Effects of a Shock to Monetary Policy," Journal of Political Economy, University of Chicago Press, vol. 113(1), pages 1-45, February.
    10. Giuliano De Rossi, 2004. "Maximum likelihood estimation of the Cox-Ingersoll-Ross model using particle filters," Computing in Economics and Finance 2004 302, Society for Computational Economics.
    11. Martin Møller Andreasen, 2008. "Ensuring the Validity of the Micro Foundation in DSGE Models," CREATES Research Papers 2008-26, Department of Economics and Business Economics, Aarhus University.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Martin Møller Andreasen, 2008. "Explaining Macroeconomic and Term Structure Dynamics Jointly in a Non-linear DSGE Model," CREATES Research Papers 2008-43, Department of Economics and Business Economics, Aarhus University.
    2. Guerron-Quintana, Pablo A., 2011. "The implications of inflation in an estimated new Keynesian model," Journal of Economic Dynamics and Control, Elsevier, vol. 35(6), pages 947-962, June.
    3. Jesús Fernández-Villaverde, 2010. "The econometrics of DSGE models," SERIEs: Journal of the Spanish Economic Association, Springer;Spanish Economic Association, vol. 1(1), pages 3-49, March.
    4. Stefan Avdjiev, 2016. "News Driven Business Cycles and Data on Asset Prices in Estimated DSGE Models," Review of Economic Dynamics, Elsevier for the Society for Economic Dynamics, vol. 20, pages 181-197, April.
    5. Martin Møller Andreasen, 2008. "Non-linear DSGE Models, The Central Difference Kalman Filter, and The Mean Shifted Particle Filter," CREATES Research Papers 2008-33, Department of Economics and Business Economics, Aarhus University.
    6. Martin M. Andreasen, 2010. "Non-linear DSGE Models and The Optimized Particle Filter," CREATES Research Papers 2010-05, Department of Economics and Business Economics, Aarhus University.
    7. Fernández-Villaverde, J. & Rubio-Ramírez, J.F. & Schorfheide, F., 2016. "Solution and Estimation Methods for DSGE Models," Handbook of Macroeconomics, in: J. B. Taylor & Harald Uhlig (ed.), Handbook of Macroeconomics, edition 1, volume 2, chapter 0, pages 527-724, Elsevier.
    8. Andreasen, Martin M., 2012. "An estimated DSGE model: Explaining variation in nominal term premia, real term premia, and inflation risk premia," European Economic Review, Elsevier, vol. 56(8), pages 1656-1674.
    9. Best, Gabriela, 2017. "Policy Preferences And Policy Makers' Beliefs: The Great Inflation," Macroeconomic Dynamics, Cambridge University Press, vol. 21(8), pages 1957-1995, December.
    10. Zheng Liu & Daniel F. Waggoner & Tao Zha, 2009. "Sources of the Great Moderation: shocks, frictions, or monetary policy?," FRB Atlanta Working Paper 2009-03, Federal Reserve Bank of Atlanta.
    11. Anna Kormilitsina, 2011. "Oil Price Shocks and the Optimality of Monetary Policy," Review of Economic Dynamics, Elsevier for the Society for Economic Dynamics, vol. 14(1), pages 199-223, January.
    12. Jonas E. Arias & Guido Ascari & Nicola Branzoli & Efrem Castelnuovo, 2020. "Positive Trend Inflation and Determinacy in a Medium-Sized New Keynesian Model," International Journal of Central Banking, International Journal of Central Banking, vol. 16(3), pages 51-94, June.
    13. Andreasen, Martin, 2011. "An estimated DSGE model: explaining variation in term premia," Bank of England working papers 441, Bank of England.
    14. S. Boragan Aruoba & Frank Schorfheide, 2011. "Sticky Prices versus Monetary Frictions: An Estimation of Policy Trade-Offs," American Economic Journal: Macroeconomics, American Economic Association, vol. 3(1), pages 60-90, January.
    15. Justiniano, Alejandro & Primiceri, Giorgio E. & Tambalotti, Andrea, 2010. "Investment shocks and business cycles," Journal of Monetary Economics, Elsevier, vol. 57(2), pages 132-145, March.
    16. Hashmat Khan & John Tsoukalas, 2012. "The Quantitative Importance of News Shocks in Estimated DSGE Models," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 44(8), pages 1535-1561, December.
    17. Ascari, Guido & Phaneuf, Louis & Sims, Eric R., 2018. "On the welfare and cyclical implications of moderate trend inflation," Journal of Monetary Economics, Elsevier, vol. 99(C), pages 56-71.
    18. Martin Kliem & Alexander Meyer‐Gohde, 2022. "(Un)expected monetary policy shocks and term premia," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 37(3), pages 477-499, April.
    19. Castelnuovo, Efrem, 2016. "Modest macroeconomic effects of monetary policy shocks during the great moderation: An alternative interpretation," Journal of Macroeconomics, Elsevier, vol. 47(PB), pages 300-314.
    20. Alejandro Justiniano & Giorgio Primiceri & Andrea Tambalotti, 2011. "Investment Shocks and the Relative Price of Investment," Review of Economic Dynamics, Elsevier for the Society for Economic Dynamics, vol. 14(1), pages 101-121, January.

    More about this item

    Keywords

    CMA-ES optimization routine; Multimodel objective function; Nelder–Mead simplex routine; Non-convex search space; Resampling; Simulated Annealing; C61; C88; E30;
    All these keywords.

    JEL classification:

    • C61 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Optimization Techniques; Programming Models; Dynamic Analysis
    • C88 - Mathematical and Quantitative Methods - - Data Collection and Data Estimation Methodology; Computer Programs - - - Other Computer Software
    • E30 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - General (includes Measurement and Data)

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:compec:v:35:y:2010:i:2:p:127-154. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.