Nothing Special   »   [go: up one dir, main page]

IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i22p15777-d1276867.html
   My bibliography  Save this article

Can an Incentivized Command-and-Control Approach Improve Groundwater Management? An Analysis of Indian Punjab

Author

Listed:
  • Sahil Bhatia

    (Department of Humanities & Social Sciences, Indian Institute of Technology, Roorkee 247667, India)

  • S. P. Singh

    (Department of Humanities & Social Sciences, Indian Institute of Technology, Roorkee 247667, India)

Abstract
The Punjab Preservation of Subsoil Water Act 2009 is a legislative measure introduced to address the critical issue of groundwater depletion in Punjab, India. This research examines the implications of this Act and the rising groundwater scarcity in Punjab. Using qualitative research methods, including GIS mapping, it evaluates the postimplementation impact of the Act on groundwater conservation and water availability and assesses its effectiveness in achieving its objectives. This study reveals that the government’s policies favoring wheat and rice have significantly contributed to the expansion of these crops, resulting in imbalanced agricultural practices. While the overall groundwater development in Punjab decreased from 170% in 2009 to 165% in 2017, a district-wise analysis reveals that the fall in the groundwater exploitation level in seven districts outperforms the rise in the exploitation level in the other thirteen districts of the state, showing overall minor or no improvement. This study proposes a multifaceted approach combining command-and-control measures with self-regulation incentives. It highlights the potential of incentivizing farmers to adopt sustainable practices, diversify crops, and implement water-efficient technologies. This paper also suggests the importance of involving stakeholders and the community in groundwater management, emphasizing the need for participatory approaches to ensure the long-term sustainability of water resources. While this study provides valuable insights, it is essential to acknowledge that its scope is limited to a qualitative assessment, and there may be challenges in generalizing the findings to all regions facing groundwater depletion.

Suggested Citation

  • Sahil Bhatia & S. P. Singh, 2023. "Can an Incentivized Command-and-Control Approach Improve Groundwater Management? An Analysis of Indian Punjab," Sustainability, MDPI, vol. 15(22), pages 1-27, November.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:22:p:15777-:d:1276867
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/22/15777/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/22/15777/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Gupta, R. P. & Tewari, S. K., 1985. "Factors Effecting Crop Diversification: An Empirical Analysis," Indian Journal of Agricultural Economics, Indian Society of Agricultural Economics, vol. 40(3), July.
    2. Singh, Karam, 2009. "Act to Save Groundwater in Punjab: Its Impact on Water Table, Electricity Subsidy and Environment," Agricultural Economics Research Review, Agricultural Economics Research Association (India), vol. 22(Conferenc).
    3. Rijsberman, Frank R., 2006. "Water scarcity: Fact or fiction?," Agricultural Water Management, Elsevier, vol. 80(1-3), pages 5-22, February.
    4. Agnieszka Kurdyś-Kujawska & Agnieszka Strzelecka & Danuta Zawadzka, 2021. "The Impact of Crop Diversification on the Economic Efficiency of Small Farms in Poland," Agriculture, MDPI, vol. 11(3), pages 1-21, March.
    5. C. J. Vörösmarty & P. B. McIntyre & M. O. Gessner & D. Dudgeon & A. Prusevich & P. Green & S. Glidden & S. E. Bunn & C. A. Sullivan & C. Reidy Liermann & P. M. Davies, 2010. "Global threats to human water security and river biodiversity," Nature, Nature, vol. 467(7315), pages 555-561, September.
    6. M. Rodell & J. S. Famiglietti & D. N. Wiese & J. T. Reager & H. K. Beaudoing & F. W. Landerer & M.-H. Lo, 2018. "Emerging trends in global freshwater availability," Nature, Nature, vol. 557(7707), pages 651-659, May.
    7. C. J. Vörösmarty & P. B. McIntyre & M. O. Gessner & D. Dudgeon & A. Prusevich & P. Green & S. Glidden & S. E. Bunn & C. A. Sullivan & C. Reidy Liermann & P. M. Davies, 2010. "Erratum: Global threats to human water security and river biodiversity," Nature, Nature, vol. 468(7321), pages 334-334, November.
    8. Drysdale, Krystal M. & Hendricks, Nathan P., 2018. "Adaptation to an irrigation water restriction imposed through local governance," Journal of Environmental Economics and Management, Elsevier, vol. 91(C), pages 150-165.
    9. Matthew Rodell & Isabella Velicogna & James S. Famiglietti, 2009. "Satellite-based estimates of groundwater depletion in India," Nature, Nature, vol. 460(7258), pages 999-1002, August.
    10. Ashwini Chhatre & Sripad Devalkar & Sridhar Seshadri, 2016. "Crop diversification and risk management in Indian agriculture," DECISION: Official Journal of the Indian Institute of Management Calcutta, Springer;Indian Institute of Management Calcutta, vol. 43(2), pages 167-179, June.
    11. Marcus Wijnen & Benedicte Augeard & Bradley Hiller & Christopher Ward & Patrick Huntjens, 2012. "Managing the Invisible : Understanding and Improving Groundwater Governance," World Bank Publications - Reports 17228, The World Bank Group.
    12. Srivastava, S.K. & Chand, Ramesh & Raju, S.S. & Jain, Rajni & I., Kingsly & Sachdeva, Jatinder & Singh, Jaspal & Kaur, Amrit Pal, 2015. "Unsustainable Groundwater Use in Punjab Agriculture: Insights from Cost of Cultivation Survey," Indian Journal of Agricultural Economics, Indian Society of Agricultural Economics, vol. 70(3), pages 1-14.
    13. Aditi Mukherji, 2022. "Sustainable Groundwater Management in India Needs a Water‐Energy‐Food Nexus Approach," Applied Economic Perspectives and Policy, John Wiley & Sons, vol. 44(1), pages 394-410, March.
    14. Ellen M. Bruno & Richard J. Sexton, 2020. "The Gains from Agricultural Groundwater Trade and the Potential for Market Power: Theory and Application," American Journal of Agricultural Economics, John Wiley & Sons, vol. 102(3), pages 884-910, May.
    15. Cropper, Maureen L & Oates, Wallace E, 1992. "Environmental Economics: A Survey," Journal of Economic Literature, American Economic Association, vol. 30(2), pages 675-740, June.
    16. Mukherji, Aditi, 2022. "Sustainable groundwater management in India needs a water-energy-food nexus approach," Papers published in Journals (Open Access), International Water Management Institute, pages 44(1):394-4.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sahil Bhatia & S. P. Singh, 2024. "Assessing Groundwater Use Efficiency and Productivity across Punjab Agriculture: District and Farm Size Perspectives," Agriculture, MDPI, vol. 14(8), pages 1-24, August.
    2. Dietrich Earnhart & Nathan P. Hendricks, 2023. "Adapting to water restrictions: Intensive versus extensive adaptation over time differentiated by water right seniority," American Journal of Agricultural Economics, John Wiley & Sons, vol. 105(5), pages 1458-1490, October.
    3. Kishore, P. & Roy, D. & Birthal, P.S. & Srivastava, S.K., 2024. "Regulation, and Policy Response to Groundwater Preservation in India," IAMO Policy Briefs 344994, Institute of Agricultural Development in Transition Economies (IAMO).
    4. Kong, Yang & He, Weijun & Shen, Juqin & Yuan, Liang & Gao, Xin & Ramsey, Thomas Stephen & Peng, Qingling & Degefu, Dagmawi Mulugeta & Sun, Fuhua, 2023. "Adaptability analysis of water pollution and advanced industrial structure in Jiangsu Province, China," Ecological Modelling, Elsevier, vol. 481(C).
    5. Kishore, P. & Roy, D. & Birthal, P.S. & Srivastava, S.K., 2024. "Regulation, and Policy Response to Groundwater Preservation in India," IAMO Policy Briefs 344994, Institute of Agricultural Development in Transition Economies (IAMO).
    6. Sukhwinder Singh & Julian Park, 2018. "Drivers of change in groundwater resources: a case study of the Indian Punjab," Food Security: The Science, Sociology and Economics of Food Production and Access to Food, Springer;The International Society for Plant Pathology, vol. 10(4), pages 965-979, August.
    7. Downing, Andrea S. & Kumar, Manish & Andersson, August & Causevic, Amar & Gustafsson, Örjan & Joshi, Niraj U. & Krishnamurthy, Chandra Kiran B. & Scholtens, Bert & Crona, Beatrice, 2022. "Unlocking the unsustainable rice-wheat system of Indian Punjab: Assessing alternatives to crop-residue burning from a systems perspective," Ecological Economics, Elsevier, vol. 195(C).
    8. Samuel Asumadu Sarkodie & Maruf Yakubu Ahmed & Phebe Asantewaa Owusu, 2022. "Global adaptation readiness and income mitigate sectoral climate change vulnerabilities," Palgrave Communications, Palgrave Macmillan, vol. 9(1), pages 1-17, December.
    9. Cai, Benan & Long, Chengjun & Du, Qiaochen & Zhang, Wenchao & Hou, Yandong & Wang, Haijun & Cai, Weihua, 2023. "Analysis of a spray flash desalination system driven by low-grade waste heat with different intermittencies," Energy, Elsevier, vol. 277(C).
    10. Yang, Lin & Pang, Shujiang & Wang, Xiaoyan & Du, Yi & Huang, Jieyu & Melching, Charles S., 2021. "Optimal allocation of best management practices based on receiving water capacity constraints," Agricultural Water Management, Elsevier, vol. 258(C).
    11. Antonio J. Castro & Cristina Quintas-Soriano & Jodi Brandt & Carla L. Atkinson & Colden V. Baxter & Morey Burnham & Benis N. Egoh & Marina García-Llorente & Jason P. Julian & Berta Martín-López & Feli, 2018. "Applying Place-Based Social-Ecological Research to Address Water Scarcity: Insights for Future Research," Sustainability, MDPI, vol. 10(5), pages 1-13, May.
    12. Yusuke Kuwayama, 2019. "Policy Note: "Opportunities and Challenges of Using Satellite Data to Inform Water Policy"," Water Economics and Policy (WEP), World Scientific Publishing Co. Pte. Ltd., vol. 5(03), pages 1-9, July.
    13. Yiwen Chiu & Yi Yang & Cody Morse, 2022. "Quantifying carbon footprint for ecological river restoration," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(1), pages 952-970, January.
    14. Stella Tsani & Phoebe Koundouri & Ebun Akinsete, 2020. "Resource management and sustainable development: A review of the European water policies in accordance with the United Nations' Sustainable Development Goals," DEOS Working Papers 2036, Athens University of Economics and Business.
    15. Andrew John & Avril Horne & Rory Nathan & Michael Stewardson & J. Angus Webb & Jun Wang & N. LeRoy Poff, 2021. "Climate change and freshwater ecology: Hydrological and ecological methods of comparable complexity are needed to predict risk," Wiley Interdisciplinary Reviews: Climate Change, John Wiley & Sons, vol. 12(2), March.
    16. Susan Das & Renuka Sane & Ajay Shah, 2024. "Solarisation in agriculture in Tamil Nadu: A first principles evaluation," Working Papers 2, Trustbridge Rule of Law Foundation.
    17. Rabeya Sultana Leya & Sujit Kumar Bala & Imran Hossain Newton & Md. Arif Chowdhury & Shamim Mahabubul Haque, 2022. "Water security assessment of a peri-urban area: a study in Singair Upazila of Manikganj district of Bangladesh," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(12), pages 14106-14129, December.
    18. Ting Xu & Baisha Weng & Denghua Yan & Kun Wang & Xiangnan Li & Wuxia Bi & Meng Li & Xiangjun Cheng & Yinxue Liu, 2019. "Wetlands of International Importance: Status, Threats, and Future Protection," IJERPH, MDPI, vol. 16(10), pages 1-23, May.
    19. Donna, Javier & Espin-Sanchez, Jose, 2014. "The Illiquidity of Water Markets," MPRA Paper 55078, University Library of Munich, Germany.
    20. Kaiser, Nina N. & Ghermandi, Andrea & Feld, Christian K. & Hershkovitz, Yaron & Palt, Martin & Stoll, Stefan, 2021. "Societal benefits of river restoration – Implications from social media analysis," Ecosystem Services, Elsevier, vol. 50(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:22:p:15777-:d:1276867. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.