Nothing Special   »   [go: up one dir, main page]

IDEAS home Printed from https://ideas.repec.org/a/fip/fedfel/y2006inov24n2006-32.html
   My bibliography  Save this article

Is a recession imminent?

Author

Listed:
  • John G. Fernald
  • Bharat Trehan
Abstract
The sharp slowdown in housing and the inverted yield curve have led to concerns that the odds of a recession have risen. For instance, Dow Jones Newswire reported on November 2 that one model based on the yield curve put the probability of a recession over the next four quarters at more than 50%. This Letter presents and discusses various estimates of the probability of recession. Our review of the evidence suggests two conclusions: First, recessions appear difficult to predict; second, while the probability of a recession over the next year may now be somewhat elevated, it does not appear to be nearly as high as the yield curve suggests.

Suggested Citation

  • John G. Fernald & Bharat Trehan, 2006. "Is a recession imminent?," FRBSF Economic Letter, Federal Reserve Bank of San Francisco, issue nov24.
  • Handle: RePEc:fip:fedfel:y:2006:i:nov24:n:2006-32
    as

    Download full text from publisher

    File URL: http://www.frbsf.org/publications/economics/letter/2006/el2006-32.html
    Download Restriction: no

    File URL: http://www.frbsf.org/publications/economics/letter/2006/el2006-32.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Michael Dueker, 2005. "Dynamic Forecasts of Qualitative Variables: A Qual VAR Model of U.S. Recessions," Journal of Business & Economic Statistics, American Statistical Association, vol. 23, pages 96-104, January.
    2. Alan Greenspan, 2005. "Federal Reserve Board's semiannual monetary policy report to the Congress: testimony before the Committee on Banking, Housing, and Urban Affairs, U.S. Senate, February 16, 2005," Speech 59, Board of Governors of the Federal Reserve System (U.S.).
    3. James H. Stock & Mark W. Watson, 1989. "New Indexes of Coincident and Leading Economic Indicators," NBER Chapters, in: NBER Macroeconomics Annual 1989, Volume 4, pages 351-409, National Bureau of Economic Research, Inc.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Vasilios Plakandaras & Juncal Cunado & Rangan Gupta & Mark E. Wohar, 2016. "Do Leading Indicators Forecast U.S. Recessions? A Nonlinear Re-Evaluation Using Historical Data," Working Papers 201685, University of Pretoria, Department of Economics.
    2. Dalibor Stevanovic, 2013. "Probability and Severity of Recessions," CIRANO Working Papers 2013s-43, CIRANO.
    3. Vrontos, Spyridon D. & Galakis, John & Vrontos, Ioannis D., 2021. "Modeling and predicting U.S. recessions using machine learning techniques," International Journal of Forecasting, Elsevier, vol. 37(2), pages 647-671.
    4. Rachidi Kotchoni & Dalibor Stevanovic, 2016. "Forecasting U.S. Recessions and Economic Activity," Working Papers hal-04141569, HAL.
    5. Hamilton, James D., 2011. "Calling recessions in real time," International Journal of Forecasting, Elsevier, vol. 27(4), pages 1006-1026, October.
    6. Lazzarini, S. G. & Madalozzo, R. C & Artes, R. & Siqueira, J. O., 2004. "Measuring trust: An experiment in Brazil," Insper Working Papers wpe_42, Insper Working Paper, Insper Instituto de Ensino e Pesquisa.
    7. Hendry, David F. & Clements, Michael P., 2003. "Economic forecasting: some lessons from recent research," Economic Modelling, Elsevier, vol. 20(2), pages 301-329, March.
    8. Franck Sédillot, 2001. "La pente des taux contient-elle de l'information sur l'activité économique future ?," Economie & Prévision, La Documentation Française, vol. 147(1), pages 141-157.
    9. Chun-Chang Lee & Chih-Min Liang & Hsing-Jung Chou, 2013. "Identifying Taiwan real estate cycle turning points- An application of the multivariate Markov-switching autoregressive Model," Advances in Management and Applied Economics, SCIENPRESS Ltd, vol. 3(2), pages 1-1.
    10. Theobald, Thomas, 2013. "Markov Switching with Endogenous Number of Regimes and Leading Indicators in a Real-Time Business Cycle Forecast," VfS Annual Conference 2013 (Duesseldorf): Competition Policy and Regulation in a Global Economic Order 79911, Verein für Socialpolitik / German Economic Association.
    11. Catherine Doz & Domenico Giannone & Lucrezia Reichlin, 2012. "A Quasi–Maximum Likelihood Approach for Large, Approximate Dynamic Factor Models," The Review of Economics and Statistics, MIT Press, vol. 94(4), pages 1014-1024, November.
    12. Allaudeen Hameed, 1997. "Time-Varying Factors And Cross-Autocorrelations In Short-Horizon Stock Returns," Journal of Financial Research, Southern Finance Association;Southwestern Finance Association, vol. 20(4), pages 435-458, December.
    13. Daniel M. Chin & John Geweke & Preston J. Miller, 2000. "Predicting turning points," Staff Report 267, Federal Reserve Bank of Minneapolis.
    14. Park, Byeong U. & Simar, Léopold & Zelenyuk, Valentin, 2017. "Nonparametric estimation of dynamic discrete choice models for time series data," Computational Statistics & Data Analysis, Elsevier, vol. 108(C), pages 97-120.
    15. Alexandros Kontonikas & Alexandros Kostakis, 2013. "On Monetary Policy and Stock Market Anomalies," Journal of Business Finance & Accounting, Wiley Blackwell, vol. 40(7-8), pages 1009-1042, September.
    16. Gupta, Rangan & Wohar, Mark, 2017. "Forecasting oil and stock returns with a Qual VAR using over 150years off data," Energy Economics, Elsevier, vol. 62(C), pages 181-186.
    17. Laura E. Jackson & M. Ayhan Kose & Christopher Otrok & Michael T. Owyang, 2016. "Specification and Estimation of Bayesian Dynamic Factor Models: A Monte Carlo Analysis with an Application to Global House Price Comovement," Advances in Econometrics, in: Dynamic Factor Models, volume 35, pages 361-400, Emerald Group Publishing Limited.
    18. Aruoba, S. BoraÄŸan & Diebold, Francis X. & Scotti, Chiara, 2009. "Real-Time Measurement of Business Conditions," Journal of Business & Economic Statistics, American Statistical Association, vol. 27(4), pages 417-427.
    19. Kahn, James A. & Rich, Robert W., 2007. "Tracking the new economy: Using growth theory to detect changes in trend productivity," Journal of Monetary Economics, Elsevier, vol. 54(6), pages 1670-1701, September.
    20. Fabio H. Nieto & Luis Fernando Melo, 2001. "About a Coincident Index for the State of the Economy," Borradores de Economia 1938, Banco de la Republica.

    More about this item

    Keywords

    Recessions; Economic forecasting;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:fip:fedfel:y:2006:i:nov24:n:2006-32. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Federal Reserve Bank of San Francisco Research Library (email available below). General contact details of provider: https://edirc.repec.org/data/frbsfus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.