Nothing Special   »   [go: up one dir, main page]

IDEAS home Printed from https://ideas.repec.org/a/eme/sefpps/v33y2016i4p595-624.html
   My bibliography  Save this article

Comparison of methods for estimating the uncertainty of value at risk

Author

Listed:
  • Santiago Gamba-Santamaria
  • Oscar Fernando Jaulin-Mendez
  • Luis Fernando Melo-Velandia
  • Carlos Andrés Quicazán-Moreno
Abstract
Purpose - Value at risk (VaR) is a market risk measure widely used by risk managers and market regulatory authorities, and various methods are proposed in the literature for its estimation. However, limited studies discuss its distribution or its confidence intervals. The purpose of this paper is to compare different techniques for computing such intervals to identify the scenarios under which such confidence interval techniques perform properly. Design/methodology/approach - The methods that are included in the comparison are based on asymptotic normality, extreme value theory and subsample bootstrap. The evaluation is done by computing the coverage rates for each method through Monte Carlo simulations under certain scenarios. The scenarios consider different persistence degrees in mean and variance, sample sizes, VaR probability levels, confidence levels of the intervals and distributions of the standardized errors. Additionally, an empirical application for the stock market index returns of G7 countries is presented. Findings - The simulation exercises show that the methods that were considered in the study are only valid for high quantiles. In particular, in terms of coverage rates, there is a good performance for VaR(99 per cent) and bad performance for VaR(95 per cent) and VaR(90 per cent). The results are confirmed by an empirical application for the stock market index returns of G7 countries. Practical implications - The findings of the study suggest that the methods that were considered to estimate VaR confidence interval are appropriated when considering high quantiles such as VaR(99 per cent). However, using these methods for smaller quantiles, such as VaR(95 per cent) and VaR(90 per cent), is not recommended. Originality/value - This study is the first one, as far as it is known, to identify the scenarios under which the methods for estimating the VaR confidence intervals perform properly. The findings are supported by simulation and empirical exercises.

Suggested Citation

  • Santiago Gamba-Santamaria & Oscar Fernando Jaulin-Mendez & Luis Fernando Melo-Velandia & Carlos Andrés Quicazán-Moreno, 2016. "Comparison of methods for estimating the uncertainty of value at risk," Studies in Economics and Finance, Emerald Group Publishing Limited, vol. 33(4), pages 595-624, October.
  • Handle: RePEc:eme:sefpps:v:33:y:2016:i:4:p:595-624
    DOI: 10.1108/SEF-03-2016-0055
    as

    Download full text from publisher

    File URL: https://www.emerald.com/insight/content/doi/10.1108/SEF-03-2016-0055/full/html?utm_source=repec&utm_medium=feed&utm_campaign=repec
    Download Restriction: Access to full text is restricted to subscribers

    File URL: https://www.emerald.com/insight/content/doi/10.1108/SEF-03-2016-0055/full/pdf?utm_source=repec&utm_medium=feed&utm_campaign=repec
    Download Restriction: Access to full text is restricted to subscribers

    File URL: https://libkey.io/10.1108/SEF-03-2016-0055?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Gao, Feng & Song, Fengming, 2008. "ESTIMATION RISK IN GARCH VaR AND ES ESTIMATES," Econometric Theory, Cambridge University Press, vol. 24(5), pages 1404-1424, October.
    2. Peter Hall & Qiwei Yao, 2003. "Data tilting for time series," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 65(2), pages 425-442, May.
    3. Moraux, Franck, 2011. "How valuable is your VaR? Large sample confidence intervals for normal VaR," Journal of Risk Management in Financial Institutions, Henry Stewart Publications, vol. 4(2), pages 189-200, March.
    4. Hang Chan, Ngai & Deng, Shi-Jie & Peng, Liang & Xia, Zhendong, 2007. "Interval estimation of value-at-risk based on GARCH models with heavy-tailed innovations," Journal of Econometrics, Elsevier, vol. 137(2), pages 556-576, April.
    5. Christoffersen, Peter, 2011. "Elements of Financial Risk Management," Elsevier Monographs, Elsevier, edition 2, number 9780123744487.
    6. Francq, Christian & Zakoïan, Jean-Michel, 2015. "Risk-parameter estimation in volatility models," Journal of Econometrics, Elsevier, vol. 184(1), pages 158-173.
    7. Leccadito, Arturo & Boffelli, Simona & Urga, Giovanni, 2014. "Evaluating the accuracy of value-at-risk forecasts: New multilevel tests," International Journal of Forecasting, Elsevier, vol. 30(2), pages 206-216.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Nieto, María Rosa & Carmona-Benítez, Rafael Bernardo, 2018. "ARIMA + GARCH + Bootstrap forecasting method applied to the airline industry," Journal of Air Transport Management, Elsevier, vol. 71(C), pages 1-8.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nieto, Maria Rosa & Ruiz, Esther, 2016. "Frontiers in VaR forecasting and backtesting," International Journal of Forecasting, Elsevier, vol. 32(2), pages 475-501.
    2. Santiago Gamba Santamaría & Oscar Fernando Jaulín Méndez & Luis Fernando Melo Velandia & Carlos Andrés Quicazán Moreno, 2015. "Comparación De Métodos Para La Estimación De La Incertidumbre Del Valor En Riesgo," Temas de Estabilidad Financiera 83, Banco de la Republica de Colombia.
    3. Yannick Hoga, 2023. "The Estimation Risk in Extreme Systemic Risk Forecasts," Papers 2304.10349, arXiv.org.
    4. Spierdijk, Laura, 2016. "Confidence intervals for ARMA–GARCH Value-at-Risk: The case of heavy tails and skewness," Computational Statistics & Data Analysis, Elsevier, vol. 100(C), pages 545-559.
    5. Alexander, Gordon J. & Baptista, Alexandre M. & Yan, Shu, 2012. "When more is less: Using multiple constraints to reduce tail risk," Journal of Banking & Finance, Elsevier, vol. 36(10), pages 2693-2716.
    6. Silvia Stanescu & Radu Tunaru, 2013. "Quantifying the uncertainty in VaR and expected shortfall estimates," Chapters, in: Adrian R. Bell & Chris Brooks & Marcel Prokopczuk (ed.), Handbook of Research Methods and Applications in Empirical Finance, chapter 15, pages 357-372, Edward Elgar Publishing.
    7. Nieto, María Rosa & Carmona-Benítez, Rafael Bernardo, 2018. "ARIMA + GARCH + Bootstrap forecasting method applied to the airline industry," Journal of Air Transport Management, Elsevier, vol. 71(C), pages 1-8.
    8. Dominique Guegan & Bertrand K. Hassani & Kehan Li, 2016. "Measuring risks in the extreme tail: The extreme VaR and its confidence interval," Documents de travail du Centre d'Economie de la Sorbonne 16034rr, Université Panthéon-Sorbonne (Paris 1), Centre d'Economie de la Sorbonne, revised Jan 2017.
    9. Andersen, Torben G. & Bollerslev, Tim & Christoffersen, Peter F. & Diebold, Francis X., 2013. "Financial Risk Measurement for Financial Risk Management," Handbook of the Economics of Finance, in: G.M. Constantinides & M. Harris & R. M. Stulz (ed.), Handbook of the Economics of Finance, volume 2, chapter 0, pages 1127-1220, Elsevier.
    10. Boucher, Christophe M. & Daníelsson, Jón & Kouontchou, Patrick S. & Maillet, Bertrand B., 2014. "Risk models-at-risk," Journal of Banking & Finance, Elsevier, vol. 44(C), pages 72-92.
    11. Christophe Hurlin & Sébastien Laurent & Rogier Quaedvlieg & Stephan Smeekes, 2017. "Risk Measure Inference," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 35(4), pages 499-512, October.
    12. Cheng, Wan-Hsiu & Hung, Jui-Cheng, 2011. "Skewness and leptokurtosis in GARCH-typed VaR estimation of petroleum and metal asset returns," Journal of Empirical Finance, Elsevier, vol. 18(1), pages 160-173, January.
    13. Timo Dimitriadis & Yannick Hoga, 2022. "Dynamic CoVaR Modeling," Papers 2206.14275, arXiv.org, revised Feb 2024.
    14. Francq, Christian & Zakoian, Jean-Michel, 2015. "Looking for efficient qml estimation of conditional value-at-risk at multiple risk levels," MPRA Paper 67195, University Library of Munich, Germany.
    15. Francq, Christian & Zakoïan, Jean-Michel, 2020. "Virtual Historical Simulation for estimating the conditional VaR of large portfolios," Journal of Econometrics, Elsevier, vol. 217(2), pages 356-380.
    16. Alexander Heinemann & Sean Telg, 2018. "A Residual Bootstrap for Conditional Expected Shortfall," Papers 1811.11557, arXiv.org.
    17. Nieto, María Rosa, 2008. "Measuring financial risk : comparison of alternative procedures to estimate VaR and ES," DES - Working Papers. Statistics and Econometrics. WS ws087326, Universidad Carlos III de Madrid. Departamento de Estadística.
    18. Beutner, Eric & Heinemann, Alexander & Smeekes, Stephan, 2024. "A residual bootstrap for conditional Value-at-Risk," Journal of Econometrics, Elsevier, vol. 238(2).
    19. Georges Tsafack & James Cataldo, 2021. "Backtesting and estimation error: value-at-risk overviolation rate," Empirical Economics, Springer, vol. 61(3), pages 1351-1396, September.
    20. Rangika Peiris & Chao Wang & Richard Gerlach & Minh-Ngoc Tran, 2024. "Semi-parametric financial risk forecasting incorporating multiple realized measures," Papers 2402.09985, arXiv.org, revised Jun 2024.

    More about this item

    Keywords

    Confidence intervals; Data tilting; Hill estimator; Subsample bootstrap; Value at risk;
    All these keywords.

    JEL classification:

    • C51 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Construction and Estimation
    • C52 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Evaluation, Validation, and Selection
    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
    • G32 - Financial Economics - - Corporate Finance and Governance - - - Financing Policy; Financial Risk and Risk Management; Capital and Ownership Structure; Value of Firms; Goodwill

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eme:sefpps:v:33:y:2016:i:4:p:595-624. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Emerald Support (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.