Nothing Special   »   [go: up one dir, main page]

IDEAS home Printed from https://ideas.repec.org/a/eee/transa/v64y2014icp135-146.html
   My bibliography  Save this article

Integrating psychometric indicators in latent class choice models

Author

Listed:
  • Hurtubia, Ricardo
  • Nguyen, My Hang
  • Glerum, Aurélie
  • Bierlaire, Michel
Abstract
Latent class models are a convenient and intuitive way to introduce taste heterogeneity in discrete choice models by relating attributes of the decision makers with unobserved behavioral classes, hence allowing for a more accurate market segmentation. Estimation and specification of latent class models can be improved with the use of psychometric indicators that measure the effect of unobserved attributes in the individual preferences. This paper proposes a method to introduce these additional indicators in the specification of integrated latent class and discrete choice models, through the definition of measurement equations that relate the indicators to attributes of the decision maker. The method is implemented for two mode-choice case studies and compared with alternative methods to introduce indicators. Results show that the proposed method generates significantly different estimates for the class and choice models and provide additional insight into the behavior of each class.

Suggested Citation

  • Hurtubia, Ricardo & Nguyen, My Hang & Glerum, Aurélie & Bierlaire, Michel, 2014. "Integrating psychometric indicators in latent class choice models," Transportation Research Part A: Policy and Practice, Elsevier, vol. 64(C), pages 135-146.
  • Handle: RePEc:eee:transa:v:64:y:2014:i:c:p:135-146
    DOI: 10.1016/j.tra.2014.03.010
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0965856414000755
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.tra.2014.03.010?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Axhausen, Kay W. & Hess, Stephane & König, Arnd & Abay, Georg & Bates, John J. & Bierlaire, Michel, 2008. "Income and distance elasticities of values of travel time savings: New Swiss results," Transport Policy, Elsevier, vol. 15(3), pages 173-185, May.
    2. Walker, Joan & Ben-Akiva, Moshe, 2002. "Generalized random utility model," Mathematical Social Sciences, Elsevier, vol. 43(3), pages 303-343, July.
    3. Greene, William H. & Hensher, David A., 2003. "A latent class model for discrete choice analysis: contrasts with mixed logit," Transportation Research Part B: Methodological, Elsevier, vol. 37(8), pages 681-698, September.
    4. Daniel McFadden, 1986. "The Choice Theory Approach to Market Research," Marketing Science, INFORMS, vol. 5(4), pages 275-297.
    5. Ben-Akiva, Moshe & McFadden, Daniel & Train, Kenneth & Börsch-Supan, Axel, 2002. "Hybrid Choice Models: Progress and Challenges," Sonderforschungsbereich 504 Publications 02-29, Sonderforschungsbereich 504, Universität Mannheim;Sonderforschungsbereich 504, University of Mannheim.
    6. Wen, Chieh-Hua & Lai, Shan-Ching, 2010. "Latent class models of international air carrier choice," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 46(2), pages 211-221, March.
    7. Edward Morey & Jennifer Thacher & William Breffle, 2006. "Using Angler Characteristics and Attitudinal Data to Identify Environmental Preference Classes: A Latent-Class Model," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 34(1), pages 91-115, May.
    8. Joan Walker & Jieping Li, 2007. "Latent lifestyle preferences and household location decisions," Journal of Geographical Systems, Springer, vol. 9(1), pages 77-101, April.
    9. Chandra R. Bhat, 1997. "An Endogenous Segmentation Mode Choice Model with an Application to Intercity Travel," Transportation Science, INFORMS, vol. 31(1), pages 34-48, February.
    10. Junyi Shen, 2009. "Latent class model or mixed logit model? A comparison by transport mode choice data," Applied Economics, Taylor & Francis Journals, vol. 41(22), pages 2915-2924.
    11. Koutsopoulos, Haris N. & Farah, Haneen, 2012. "Latent class model for car following behavior," Transportation Research Part B: Methodological, Elsevier, vol. 46(5), pages 563-578.
    12. Michael Keane & Nada Wasi, 2013. "Comparing Alternative Models Of Heterogeneity In Consumer Choice Behavior," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 28(6), pages 1018-1045, September.
    13. Daniel McFadden & Kenneth Train, 2000. "Mixed MNL models for discrete response," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 15(5), pages 447-470.
    14. Wen, Chieh-Hua & Wang, Wei-Chung & Fu, Chiang, 2012. "Latent class nested logit model for analyzing high-speed rail access mode choice," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 48(2), pages 545-554.
    15. Peter Boxall & Wiktor Adamowicz, 2002. "Understanding Heterogeneous Preferences in Random Utility Models: A Latent Class Approach," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 23(4), pages 421-446, December.
    16. Zhang, Junyi & Kuwano, Masashi & Lee, Backjin & Fujiwara, Akimasa, 2009. "Modeling household discrete choice behavior incorporating heterogeneous group decision-making mechanisms," Transportation Research Part B: Methodological, Elsevier, vol. 43(2), pages 230-250, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kim, Sung Hoo & Mokhtarian, Patricia L., 2023. "Finite mixture (or latent class) modeling in transportation: Trends, usage, potential, and future directions," Transportation Research Part B: Methodological, Elsevier, vol. 172(C), pages 134-173.
    2. Zhou, Heng & Norman, Richard & Xia, Jianhong(Cecilia) & Hughes, Brett & Kelobonye, Keone & Nikolova, Gabi & Falkmer, Torbjorn, 2020. "Analysing travel mode and airline choice using latent class modelling: A case study in Western Australia," Transportation Research Part A: Policy and Practice, Elsevier, vol. 137(C), pages 187-205.
    3. Sfeir, Georges & Abou-Zeid, Maya & Rodrigues, Filipe & Pereira, Francisco Camara & Kaysi, Isam, 2021. "Latent class choice model with a flexible class membership component: A mixture model approach," Journal of choice modelling, Elsevier, vol. 41(C).
    4. Joan L. Walker & Moshe Ben-Akiva, 2011. "Advances in Discrete Choice: Mixture Models," Chapters, in: André de Palma & Robin Lindsey & Emile Quinet & Roger Vickerman (ed.), A Handbook of Transport Economics, chapter 8, Edward Elgar Publishing.
    5. Khakdaman, Masoud & Rezaei, Jafar & Tavasszy, Lóránt A., 2020. "Shippers’ willingness to delegate modal control in freight transportation," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 141(C).
    6. Tinessa, Fiore & Marzano, Vittorio & Papola, Andrea, 2020. "Mixing distributions of tastes with a Combination of Nested Logit (CoNL) kernel: Formulation and performance analysis," Transportation Research Part B: Methodological, Elsevier, vol. 141(C), pages 1-23.
    7. Haghani, Milad & Bliemer, Michiel C.J. & Hensher, David A., 2021. "The landscape of econometric discrete choice modelling research," Journal of choice modelling, Elsevier, vol. 40(C).
    8. Xuemei Fu & Zhicai Juan, 2017. "Accommodating preference heterogeneity in commuting mode choice: an empirical investigation in Shaoxing, China," Transportation Planning and Technology, Taylor & Francis Journals, vol. 40(4), pages 434-448, May.
    9. Wen, Chieh-Hua & Wang, Wei-Chung & Fu, Chiang, 2012. "Latent class nested logit model for analyzing high-speed rail access mode choice," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 48(2), pages 545-554.
    10. Oryani, Bahareh & Koo, Yoonmo & Shafiee, Afsaneh & Rezania, Shahabaldin & Jung, Jiyeon & Choi, Hyunhong & Khan, Muhammad Kamran, 2022. "Heterogeneous preferences for EVs: Evidence from Iran," Renewable Energy, Elsevier, vol. 181(C), pages 675-691.
    11. Jing Lu & Cheng Lv & Zhongzhen Yang & Mark Hansen, 2019. "Market Segmentation of New Gateway Airports Incorporating Passengers’ Curiosity," Sustainability, MDPI, vol. 11(24), pages 1-24, December.
    12. Rico Krueger & Akshay Vij & Taha H. Rashidi, 2018. "A Dirichlet Process Mixture Model of Discrete Choice," Papers 1801.06296, arXiv.org.
    13. Xuemei Fu, 2021. "How habit moderates the commute mode decision process: integration of the theory of planned behavior and latent class choice model," Transportation, Springer, vol. 48(5), pages 2681-2707, October.
    14. Krueger, Rico & Rashidi, Taha H. & Vij, Akshay, 2020. "A Dirichlet process mixture model of discrete choice: Comparisons and a case study on preferences for shared automated vehicles," Journal of choice modelling, Elsevier, vol. 36(C).
    15. Tomás Rossetti & Verónica Saud & Ricardo Hurtubia, 2019. "I want to ride it where I like: measuring design preferences in cycling infrastructure," Transportation, Springer, vol. 46(3), pages 697-718, June.
    16. Siliang Luan & Qingfang Yang & Zhongtai Jiang & Huxing Zhou & Fanyun Meng, 2022. "Analyzing Commute Mode Choice Using the LCNL Model in the Post-COVID-19 Era: Evidence from China," IJERPH, MDPI, vol. 19(9), pages 1-26, April.
    17. Akshay Vij & Rico Krueger, 2018. "Random taste heterogeneity in discrete choice models: Flexible nonparametric finite mixture distributions," Papers 1802.02299, arXiv.org.
    18. Angel Bujosa & Antoni Riera & Robert Hicks, 2010. "Combining Discrete and Continuous Representations of Preference Heterogeneity: A Latent Class Approach," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 47(4), pages 477-493, December.
    19. Beeramoole, Prithvi Bhat & Arteaga, Cristian & Pinz, Alban & Haque, Md Mazharul & Paz, Alexander, 2023. "Extensive hypothesis testing for estimation of mixed-Logit models," Journal of choice modelling, Elsevier, vol. 47(C).
    20. Vij, Akshay & Krueger, Rico, 2017. "Random taste heterogeneity in discrete choice models: Flexible nonparametric finite mixture distributions," Transportation Research Part B: Methodological, Elsevier, vol. 106(C), pages 76-101.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transa:v:64:y:2014:i:c:p:135-146. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/547/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.