Nothing Special   »   [go: up one dir, main page]

IDEAS home Printed from https://ideas.repec.org/a/eee/tefoso/v90y2015ipap137-152.html
   My bibliography  Save this article

Energy efficiency policies and the timing of action: An assessment of climate mitigation costs

Author

Listed:
  • Bibas, Ruben
  • Méjean, Aurélie
  • Hamdi-Cherif, Meriem
Abstract
This paper assesses the sensitivity of climate change mitigation costs to energy efficiency policies, and gives policy insights for the timing of climate action. A hybrid general equilibrium model (Imaclim-R) is used to investigate numerically the interaction between technical change and economic growth. Energy efficiency in productive sectors lowers energy prices. Lower energy prices increase demand due to lower prices of non-energy goods and higher household revenues. Energy efficiency lowers the carbon price, shifting the emission constraint away from household energy consumption. Energy efficiency policies drive economic growth and reduce policy costs, but only if energy efficiency policies in industrialised regions are combined with measures to accelerate technology transfers towards other regions. The timing of efforts reveals a trade-off between short and long term costs. Early action triggers energy efficiency but shows high short-term costs and should be considered in combination with policies to accelerate technology diffusion. Late action shows high long-term costs, even when combined with policies to enhance innovation and accelerate diffusion. Early action could reduce the cost uncertainty induced by the controversy surrounding the appropriate discount rate for policy assessment, while late action would require additional measures to reduce long term costs, notably in sectors with significant inertia.

Suggested Citation

  • Bibas, Ruben & Méjean, Aurélie & Hamdi-Cherif, Meriem, 2015. "Energy efficiency policies and the timing of action: An assessment of climate mitigation costs," Technological Forecasting and Social Change, Elsevier, vol. 90(PA), pages 137-152.
  • Handle: RePEc:eee:tefoso:v:90:y:2015:i:pa:p:137-152
    DOI: 10.1016/j.techfore.2014.05.003
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0040162514001425
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.techfore.2014.05.003?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Jeroen Bergh, 2011. "Energy Conservation More Effective With Rebound Policy," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 48(1), pages 43-58, January.
    2. de Coninck, Heleen & Fischer, Carolyn & Newell, Richard G. & Ueno, Takahiro, 2008. "International technology-oriented agreements to address climate change," Energy Policy, Elsevier, vol. 36(1), pages 335-356, January.
    3. Dechezleprêtre, Antoine & Glachant, Matthieu & Ménière, Yann, 2008. "The Clean Development Mechanism and the international diffusion of technologies: An empirical study," Energy Policy, Elsevier, vol. 36(4), pages 1273-1283, April.
    4. Valentina Bosetti & Carlo Carraro & Marzio Galeotti, 2006. "The Dynamics of Carbon and Energy Intensity in a Model of Endogenous Technical Change," The Energy Journal, , vol. 27(1_suppl), pages 191-206, January.
    5. Ozturk, Ilhan, 2010. "A literature survey on energy-growth nexus," Energy Policy, Elsevier, vol. 38(1), pages 340-349, January.
    6. Xepapadeas, Anastasios, 2005. "Economic growth and the environment," Handbook of Environmental Economics, in: K. G. Mäler & J. R. Vincent (ed.), Handbook of Environmental Economics, edition 1, volume 3, chapter 23, pages 1219-1271, Elsevier.
    7. Henri Waisman & Céline Guivarch & Fabio Grazi & Jean Hourcade, 2012. "The I maclim-R model: infrastructures, technical inertia and the costs of low carbon futures under imperfect foresight," Climatic Change, Springer, vol. 114(1), pages 101-120, September.
    8. Berndt, Ernst R & Wood, David O, 1975. "Technology, Prices, and the Derived Demand for Energy," The Review of Economics and Statistics, MIT Press, vol. 57(3), pages 259-268, August.
    9. Jaffe, Adam B. & Newell, Richard G. & Stavins, Robert N., 2003. "Chapter 11 Technological change and the environment," Handbook of Environmental Economics, in: K. G. Mäler & J. R. Vincent (ed.), Handbook of Environmental Economics, edition 1, volume 1, chapter 11, pages 461-516, Elsevier.
    10. Lindenberger, Dietmar & Kuemmel, Rainer, 2011. "Energy and the State of Nations," EWI Working Papers 2011-11, Energiewirtschaftliches Institut an der Universitaet zu Koeln (EWI).
    11. Schafer, Andreas & Victor, David G., 2000. "The future mobility of the world population," Transportation Research Part A: Policy and Practice, Elsevier, vol. 34(3), pages 171-205, April.
    12. de Almeida, Edmar Luiz Fagundes, 1998. "Energy efficiency and the limits of market forces: The example of the electric motor market in France," Energy Policy, Elsevier, vol. 26(8), pages 643-653, July.
    13. Popp, David, 2004. "ENTICE: endogenous technological change in the DICE model of global warming," Journal of Environmental Economics and Management, Elsevier, vol. 48(1), pages 742-768, July.
    14. J. R. Hicks, 1963. "The Theory of Wages," Palgrave Macmillan Books, Palgrave Macmillan, number 978-1-349-00189-7, December.
    15. Olivier Sassi & Renaud Crassous & Jean-Charles Hourcade & Vincent Gitz & Henri Waisman & Celine Guivarch, 2010. "IMACLIM-R: a modelling framework to simulate sustainable development pathways," International Journal of Global Environmental Issues, Inderscience Enterprises Ltd, vol. 10(1/2), pages 5-24.
    16. Robert M. Solow, 1956. "A Contribution to the Theory of Economic Growth," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 70(1), pages 65-94.
    17. McDonald, Alan & Schrattenholzer, Leo, 2001. "Learning rates for energy technologies," Energy Policy, Elsevier, vol. 29(4), pages 255-261, March.
    18. Romer, Paul M, 1990. "Endogenous Technological Change," Journal of Political Economy, University of Chicago Press, vol. 98(5), pages 71-102, October.
    19. M. Ha-Duong & M. J. Grubb & J.-C. Hourcade, 1997. "Influence of socioeconomic inertia and uncertainty on optimal CO2-emission abatement," Nature, Nature, vol. 390(6657), pages 270-273, November.
    20. Fisher-Vanden, Karen & Jefferson, Gary H. & Jingkui, Ma & Jianyi, Xu, 2006. "Technology development and energy productivity in China," Energy Economics, Elsevier, vol. 28(5-6), pages 690-705, November.
    21. Neij, Lena, 2008. "Cost development of future technologies for power generation--A study based on experience curves and complementary bottom-up assessments," Energy Policy, Elsevier, vol. 36(6), pages 2200-2211, June.
    22. Fisher-Vanden, Karen & Ho, Mun S., 2010. "Technology, development, and the environment," Journal of Environmental Economics and Management, Elsevier, vol. 59(1), pages 94-108, January.
    23. Ru, Peng & Zhi, Qiang & Zhang, Fang & Zhong, Xiaotian & Li, Jianqiang & Su, Jun, 2012. "Behind the development of technology: The transition of innovation modes in China’s wind turbine manufacturing industry," Energy Policy, Elsevier, vol. 43(C), pages 58-69.
    24. Ivan Haščič & Nick Johnstone, 2011. "CDM and international technology transfer: empirical evidence on wind power," Climate Policy, Taylor & Francis Journals, vol. 11(6), pages 1303-1314, November.
    25. Popp, David & Newell, Richard G. & Jaffe, Adam B., 2010. "Energy, the Environment, and Technological Change," Handbook of the Economics of Innovation, in: Bronwyn H. Hall & Nathan Rosenberg (ed.), Handbook of the Economics of Innovation, edition 1, volume 2, chapter 0, pages 873-937, Elsevier.
    26. Karen Turner, 2013. ""Rebound" Effects from Increased Energy Efficiency: A Time to Pause and Reflect," The Energy Journal, International Association for Energy Economics, vol. 0(Number 4).
    27. Sue Wing, Ian, 2006. "Representing induced technological change in models for climate policy analysis," Energy Economics, Elsevier, vol. 28(5-6), pages 539-562, November.
    28. Sorrell, Steve & Dimitropoulos, John, 2008. "The rebound effect: Microeconomic definitions, limitations and extensions," Ecological Economics, Elsevier, vol. 65(3), pages 636-649, April.
    29. Grubb, Michael, 1993. "Policy modelling for climate change : The missing models," Energy Policy, Elsevier, vol. 21(3), pages 203-208, March.
    30. Carol Corrado & Joe Mattey, 1997. "Capacity Utilization," Journal of Economic Perspectives, American Economic Association, vol. 11(1), pages 151-167, Winter.
    31. Jean-Marc Burniaux & John P. Martin & Giuseppe Nicoletti & Joaquim Oliveira Martins, 1992. "GREEN a Multi-Sector, Multi-Region General Equilibrium Model for Quantifying the Costs of Curbing CO2 Emissions: A Technical Manual," OECD Economics Department Working Papers 116, OECD Publishing.
    32. Renaud Crassous, Jean-Charles Hourcade, Olivier Sassi, 2006. "Endogenous Structural Change and Climate Targets Modeling Experiments with Imaclim-R," The Energy Journal, International Association for Energy Economics, vol. 0(Special I), pages 259-276.
    33. Jean Charles Hourcade & Mark Jaccard & Chris Bataille & Frédéric Ghersi, 2006. "Hybrid Modeling: New Answers to Old Challenges," Post-Print halshs-00471234, HAL.
    34. Erik Haites & Maosheng Duan & Stephen Seres, 2006. "Technology transfer by CDM projects," Climate Policy, Taylor & Francis Journals, vol. 6(3), pages 327-344, May.
    35. Céline Guivarch & Renaud Crassous & Olivier Sassi & Stéphane Hallegatte, 2011. "The costs of climate policies in a second-best world with labour market imperfections," Climate Policy, Taylor & Francis Journals, vol. 11(1), pages 768-788, January.
    36. Liu, Feng & Ross, Marc & Wang, Shumao, 1995. "Energy efficiency of China's cement industry," Energy, Elsevier, vol. 20(7), pages 669-681.
    37. Renaud Crassous & Jean Charles Hourcade & Olivier Sassi, 2006. "Endogenous structural change and climate targets," Post-Print halshs-00009335, HAL.
    38. Buonanno, Paolo & Carraro, Carlo & Galeotti, Marzio, 2003. "Endogenous induced technical change and the costs of Kyoto," Resource and Energy Economics, Elsevier, vol. 25(1), pages 11-34, February.
    39. Gillingham, Kenneth & Newell, Richard G. & Pizer, William A., 2008. "Modeling endogenous technological change for climate policy analysis," Energy Economics, Elsevier, vol. 30(6), pages 2734-2753, November.
    40. repec:dau:papers:123456789/11049 is not listed on IDEAS
    41. Renaud Crassous & Jean Charles Hourcade & Olivier Sassi, 2006. "Endogenous Structural Change and Climate Targets : Modeling experiments with Imaclim-R," Working Papers hal-00866411, HAL.
    42. Okazaki, Teruo & Yamaguchi, Mitsutsune, 2011. "Accelerating the transfer and diffusion of energy saving technologies steel sector experience--Lessons learned," Energy Policy, Elsevier, vol. 39(3), pages 1296-1304, March.
    43. F. Ghersi & Jean Charles Hourcade, 2006. "Macroeconomic consistency issues in E3 modeling: The continued fable of the elephant and the rabbit," Post-Print hal-00716324, HAL.
    44. Ruben Bibas & Aurélie Méjean, 2012. "Potential and limitations of bioenergy options for low carbon transitions," CIRED Working Papers hal-00866407, HAL.
    45. Frederic Ghersi and Jean-Charles Hourcade, 2006. "Macroeconomic Consistency issues in E3 Modeling: The Continued Fable of the Elephant and the Rabbit," The Energy Journal, International Association for Energy Economics, vol. 0(Special I), pages 39-62.
    46. Clarke, Leon & Weyant, John & Edmonds, Jae, 2008. "On the sources of technological change: What do the models assume," Energy Economics, Elsevier, vol. 30(2), pages 409-424, March.
    47. David G. Blanchflower & Andrew J. Oswald, 1995. "An Introduction to the Wage Curve," Journal of Economic Perspectives, American Economic Association, vol. 9(3), pages 153-167, Summer.
    48. Shilpa Rao, Ilkka Keppo and Keywan Riahi, 2006. "Importance of Technological Change and Spillovers in Long-Term Climate Policy," The Energy Journal, International Association for Energy Economics, vol. 0(Special I), pages 123-140.
    49. Schumacher, Katja & Sands, Ronald D., 2007. "Where are the industrial technologies in energy-economy models? An innovative CGE approach for steel production in Germany," Energy Economics, Elsevier, vol. 29(4), pages 799-825, July.
    50. McFarland, J. R. & Reilly, J. M. & Herzog, H. J., 2004. "Representing energy technologies in top-down economic models using bottom-up information," Energy Economics, Elsevier, vol. 26(4), pages 685-707, July.
    51. Kevin J. Stiroh & Dale W. Jorgenson, 1999. "Information Technology and Growth," American Economic Review, American Economic Association, vol. 89(2), pages 109-115, May.
    52. Joaquim Oliveira Martins & Frédéric Gonand & Pablo Antolín & Christine de la Maisonneuve & Kwang-Yeol Yoo, 2005. "The Impact of Ageing on Demand, Factor Markets and Growth," OECD Economics Department Working Papers 420, OECD Publishing.
    53. Lindenberger, Dietmar & Kümmel, Reiner, 2011. "Energy and the state of nations," Energy, Elsevier, vol. 36(10), pages 6010-6018.
    54. Goulder, Lawrence H. & Schneider, Stephen H., 1999. "Induced technological change and the attractiveness of CO2 abatement policies," Resource and Energy Economics, Elsevier, vol. 21(3-4), pages 211-253, August.
    55. Popp, David C., 2001. "The effect of new technology on energy consumption," Resource and Energy Economics, Elsevier, vol. 23(3), pages 215-239, July.
    56. Loschel, Andreas, 2002. "Technological change in economic models of environmental policy: a survey," Ecological Economics, Elsevier, vol. 43(2-3), pages 105-126, December.
    57. R. Crassous & Jean Charles Hourcade & O. Sassi, 2006. "Endogenous structural change and climate targets modeling experiments with imaclim-R," Post-Print hal-00719272, HAL.
    58. Jeffrey A. Krautkraemer, 1998. "Nonrenewable Resource Scarcity," Journal of Economic Literature, American Economic Association, vol. 36(4), pages 2065-2107, December.
    59. Clarke, Leon & Weyant, John & Birky, Alicia, 2006. "On the sources of technological change: Assessing the evidence," Energy Economics, Elsevier, vol. 28(5-6), pages 579-595, November.
    60. Lema, Adrian & Ruby, Kristian, 2007. "Between fragmented authoritarianism and policy coordination: Creating a Chinese market for wind energy," Energy Policy, Elsevier, vol. 35(7), pages 3879-3890, July.
    61. Dowlatabadi, Hadi & Oravetz, Matthew A., 2006. "US long-term energy intensity: Backcast and projection," Energy Policy, Elsevier, vol. 34(17), pages 3245-3256, November.
    62. Fuminori Sano, Keigo Akimoto, Takashi Homma and Toshimasa Tomoda, 2006. "Analysis of Technological Portfolios for CO2 Stabilizations and Effects of Technological Changes," The Energy Journal, International Association for Energy Economics, vol. 0(Special I), pages 141-162.
    63. Seres, Stephen & Haites, Erik & Murphy, Kevin, 2009. "Analysis of technology transfer in CDM projects: An update," Energy Policy, Elsevier, vol. 37(11), pages 4919-4926, November.
    64. Lucas, Robert Jr., 1988. "On the mechanics of economic development," Journal of Monetary Economics, Elsevier, vol. 22(1), pages 3-42, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Florian Leblanc & C. Cassen & Thierry Brunelle & Patrice Dumas & Aurélie Méjean, 2014. "Globis final report on Integrated Scenarios D30," CIRED Working Papers hal-01300545, HAL.
    2. Guivarch, Céline & Monjon, Stéphanie, 2017. "Identifying the main uncertainty drivers of energy security in a low-carbon world: The case of Europe," Energy Economics, Elsevier, vol. 64(C), pages 530-541.
    3. Elias Asproudis & Nadeem Khan & Nada Korac-Kakabadse, 2019. "Game of Regional Environmental Policy: Europe and US," Journal of Industry, Competition and Trade, Springer, vol. 19(1), pages 1-20, March.
    4. Tol, Richard S.J., 2023. "The fiscal implications of stringent climate policy," Economic Analysis and Policy, Elsevier, vol. 80(C), pages 495-504.
    5. Asproudis, Elias & Filippiadis, Eleftherios & Tian, Mo, 2022. "Timing of environmental technological choice and trade unions' climate solidarity," Technological Forecasting and Social Change, Elsevier, vol. 182(C).
    6. Riahi, Keywan & Kriegler, Elmar & Johnson, Nils & Bertram, Christoph & den Elzen, Michel & Eom, Jiyong & Schaeffer, Michiel & Edmonds, Jae & Isaac, Morna & Krey, Volker & Longden, Thomas & Luderer, Gu, 2015. "Locked into Copenhagen pledges — Implications of short-term emission targets for the cost and feasibility of long-term climate goals," Technological Forecasting and Social Change, Elsevier, vol. 90(PA), pages 8-23.
    7. Charlotte Senkpiel & Audrey Dobbins & Christina Kockel & Jan Steinbach & Ulrich Fahl & Farina Wille & Joachim Globisch & Sandra Wassermann & Bert Droste-Franke & Wolfgang Hauser & Claudia Hofer & Lars, 2020. "Integrating Methods and Empirical Findings from Social and Behavioural Sciences into Energy System Models—Motivation and Possible Approaches," Energies, MDPI, vol. 13(18), pages 1-30, September.
    8. Colmenares, Gloria & Löschel, Andreas & Madlener, Reinhard, 2019. "The rebound effect and its representation in energy and climate models," CAWM Discussion Papers 106, University of Münster, Münster Center for Economic Policy (MEP).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Popp, David & Newell, Richard G. & Jaffe, Adam B., 2010. "Energy, the Environment, and Technological Change," Handbook of the Economics of Innovation, in: Bronwyn H. Hall & Nathan Rosenberg (ed.), Handbook of the Economics of Innovation, edition 1, volume 2, chapter 0, pages 873-937, Elsevier.
    2. Ruben Bibas & Aurélie Méjean, 2014. "Potential and limitations of bioenergy for low carbon transitions," Climatic Change, Springer, vol. 123(3), pages 731-761, April.
    3. Ruben Bibas & Aurélie Méjean, 2012. "Negative emissions and ambitious climate policies in a second best world: A general equilibrium assessment of technology options in the electricity sector," EcoMod2012 4569, EcoMod.
    4. Kuik, Onno & Brander, Luke & Tol, Richard S.J., 2009. "Marginal abatement costs of greenhouse gas emissions: A meta-analysis," Energy Policy, Elsevier, vol. 37(4), pages 1395-1403, April.
    5. Gillingham, Kenneth & Newell, Richard G. & Pizer, William A., 2008. "Modeling endogenous technological change for climate policy analysis," Energy Economics, Elsevier, vol. 30(6), pages 2734-2753, November.
    6. Giraudet, Louis-Gaëtan & Guivarch, Céline & Quirion, Philippe, 2012. "Exploring the potential for energy conservation in French households through hybrid modeling," Energy Economics, Elsevier, vol. 34(2), pages 426-445.
    7. Mort Webster & Karen Fisher-Vanden & David Popp & Nidhi Santen, 2017. "Should We Give Up after Solyndra? Optimal Technology R&D Portfolios under Uncertainty," Journal of the Association of Environmental and Resource Economists, University of Chicago Press, vol. 4(S1), pages 123-151.
    8. Céline Guivarch & Renaud Crassous & Olivier Sassi & Stéphane Hallegatte, 2009. "The costs of climate policies in a second best world with labour market," CIRED Working Papers hal-00866429, HAL.
    9. Céline Guivarch & Renaud Crassous & Olivier Sassi & Stéphane Hallegatte, 2011. "The costs of climate policies in a second-best world with labour market imperfections," Climate Policy, Taylor & Francis Journals, vol. 11(1), pages 768-788, January.
    10. Naqvi, Asjad & Stockhammer, Engelbert, 2018. "Directed Technological Change in a Post-Keynesian Ecological Macromodel," Ecological Economics, Elsevier, vol. 154(C), pages 168-188.
    11. Julien Lefevre, 2018. "Modeling the Socioeconomic Impacts of the Adoption of a Carbon Pricing Instrument – Literature review," CIRED Working Papers hal-03128619, HAL.
    12. Gregory Casey, 2024. "Energy Efficiency and Directed Technical Change: Implications for Climate Change Mitigation," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 91(1), pages 192-228.
    13. Guivarch, Céline & Monjon, Stéphanie, 2017. "Identifying the main uncertainty drivers of energy security in a low-carbon world: The case of Europe," Energy Economics, Elsevier, vol. 64(C), pages 530-541.
    14. Pizer, William A. & Popp, David, 2008. "Endogenizing technological change: Matching empirical evidence to modeling needs," Energy Economics, Elsevier, vol. 30(6), pages 2754-2770, November.
    15. Loisel, Rodica, 2009. "Environmental climate instruments in Romania: A comparative approach using dynamic CGE modelling," Energy Policy, Elsevier, vol. 37(6), pages 2190-2204, June.
    16. Wei Jin, 2012. "International Knowledge Spillover and Technology Externality: Why Multilateral R&D Coordination Matters for Global Climate Governance," CAMA Working Papers 2012-53, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.
    17. Kahouli-Brahmi, Sondes, 2008. "Technological learning in energy-environment-economy modelling: A survey," Energy Policy, Elsevier, vol. 36(1), pages 138-162, January.
    18. Wei Jin, 2012. "Can Technological Innovation Help China Take on Its Climate Responsibility? A Computable General Equilibrium Analysis," CAMA Working Papers 2012-51, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.
    19. Jin, Wei, 2015. "Can China harness globalization to reap domestic carbon savings? Modeling international technology diffusion in a multi-region framework," China Economic Review, Elsevier, vol. 34(C), pages 64-82.
    20. Bretschger, Lucas & Ramer, Roger & Schwark, Florentine, 2011. "Growth effects of carbon policies: Applying a fully dynamic CGE model with heterogeneous capital," Resource and Energy Economics, Elsevier, vol. 33(4), pages 963-980.

    More about this item

    Keywords

    Energy efficiency; Climate policy; General equilibrium; Endogenous technical change;
    All these keywords.

    JEL classification:

    • C68 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Computable General Equilibrium Models
    • F0 - International Economics - - General
    • H23 - Public Economics - - Taxation, Subsidies, and Revenue - - - Externalities; Redistributive Effects; Environmental Taxes and Subsidies
    • Q01 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - General - - - Sustainable Development
    • Q4 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy
    • Q5 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:tefoso:v:90:y:2015:i:pa:p:137-152. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.sciencedirect.com/science/journal/00401625 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.