Nothing Special   »   [go: up one dir, main page]

IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v200y2020ics0951832019306209.html
   My bibliography  Save this article

Automated wind turbine maintenance scheduling

Author

Listed:
  • Yürüşen, Nurseda Y.
  • Rowley, Paul N.
  • Watson, Simon J.
  • Melero, Julio J.
Abstract
While many operation and maintenance (O&M) decision support systems (DSS) have been already proposed, a serious research need still exists for wind farm O&M scheduling. O&M planning is a challenging task, as maintenance teams must follow specific procedures when performing their service, which requires working at height in adverse weather conditions. Here, an automated maintenance programming framework is proposed based on real case studies considering available wind speed and wind gust data. The methodology proposed consists on finding the optimal intervention time and the most effective execution order for maintenance tasks and was built on information from regular maintenance visit tasks and a corrective maintenance visit. The objective is to find possible schedules where all work orders can be performed without breaks, and to find out when to start in order to minimise revenue losses (i.e. doing maintenance when there is least wind). For the DSS, routine maintenance tasks are grouped using the findings of an agglomerative nesting analysis. Then, the task execution windows are searched within pre-planned maintenance day.

Suggested Citation

  • Yürüşen, Nurseda Y. & Rowley, Paul N. & Watson, Simon J. & Melero, Julio J., 2020. "Automated wind turbine maintenance scheduling," Reliability Engineering and System Safety, Elsevier, vol. 200(C).
  • Handle: RePEc:eee:reensy:v:200:y:2020:i:c:s0951832019306209
    DOI: 10.1016/j.ress.2020.106965
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832019306209
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2020.106965?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Cao, Qing & Ewing, Bradley T. & Thompson, Mark A., 2012. "Forecasting wind speed with recurrent neural networks," European Journal of Operational Research, Elsevier, vol. 221(1), pages 148-154.
    2. Price, Trevor & Bunn, Jenny & Probert, Doug & Hales, Richard, 1996. "Wind-energy harnessing: Global, national and local considerations," Applied Energy, Elsevier, vol. 54(2), pages 103-179, June.
    3. Scheu, Matti Niclas & Kolios, Athanasios & Fischer, Tim & Brennan, Feargal, 2017. "Influence of statistical uncertainty of component reliability estimations on offshore wind farm availability," Reliability Engineering and System Safety, Elsevier, vol. 168(C), pages 28-39.
    4. Irawan, Chandra Ade & Ouelhadj, Djamila & Jones, Dylan & Stålhane, Magnus & Sperstad, Iver Bakken, 2017. "Optimisation of maintenance routing and scheduling for offshore wind farms," European Journal of Operational Research, Elsevier, vol. 256(1), pages 76-89.
    5. Zhang, Zijun & Kusiak, Andrew & Song, Zhe, 2013. "Scheduling electric power production at a wind farm," European Journal of Operational Research, Elsevier, vol. 224(1), pages 227-238.
    6. Perez-Canto, Salvador & Rubio-Romero, Juan Carlos, 2013. "A model for the preventive maintenance scheduling of power plants including wind farms," Reliability Engineering and System Safety, Elsevier, vol. 119(C), pages 67-75.
    7. Nielsen, Jannie Jessen & Sørensen, John Dalsgaard, 2011. "On risk-based operation and maintenance of offshore wind turbine components," Reliability Engineering and System Safety, Elsevier, vol. 96(1), pages 218-229.
    8. Charrad, Malika & Ghazzali, Nadia & Boiteau, Véronique & Niknafs, Azam, 2014. "NbClust: An R Package for Determining the Relevant Number of Clusters in a Data Set," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 61(i06).
    9. Taylor, James W. & Jeon, Jooyoung, 2018. "Probabilistic forecasting of wave height for offshore wind turbine maintenance," European Journal of Operational Research, Elsevier, vol. 267(3), pages 877-890.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sadeghian, Omid & Mohammadpour Shotorbani, Amin & Mohammadi-Ivatloo, Behnam & Sadiq, Rehan & Hewage, Kasun, 2021. "Risk-averse maintenance scheduling of generation units in combined heat and power systems with demand response," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    2. Yeter, B. & Garbatov, Y. & Guedes Soares, C., 2022. "Life-extension classification of offshore wind assets using unsupervised machine learning," Reliability Engineering and System Safety, Elsevier, vol. 219(C).
    3. Ren, Zhengru & Verma, Amrit Shankar & Li, Ye & Teuwen, Julie J.E. & Jiang, Zhiyu, 2021. "Offshore wind turbine operations and maintenance: A state-of-the-art review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
    4. Mohamed Benbouzid & Tarek Berghout & Nur Sarma & Siniša Djurović & Yueqi Wu & Xiandong Ma, 2021. "Intelligent Condition Monitoring of Wind Power Systems: State of the Art Review," Energies, MDPI, vol. 14(18), pages 1-33, September.
    5. Zhang, Chen & Hu, Di & Yang, Tao, 2022. "Anomaly detection and diagnosis for wind turbines using long short-term memory-based stacked denoising autoencoders and XGBoost," Reliability Engineering and System Safety, Elsevier, vol. 222(C).
    6. Pliego Marugán, Alberto & García Márquez, Fausto Pedro & Pinar Pérez, Jesús María, 2022. "A techno-economic model for avoiding conflicts of interest between owners of offshore wind farms and maintenance suppliers," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    7. Saleh, Ali & Chiachío, Manuel & Salas, Juan Fernández & Kolios, Athanasios, 2023. "Self-adaptive optimized maintenance of offshore wind turbines by intelligent Petri nets," Reliability Engineering and System Safety, Elsevier, vol. 231(C).
    8. Alberto Pliego Marug'an & Fausto Pedro Garc'ia M'arquez & Jes'us Mar'ia Pinar P'erez, 2024. "A techno-economic model for avoiding conflicts of interest between owners of offshore wind farms and maintenance suppliers," Papers 2401.08251, arXiv.org.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pliego Marugán, Alberto & García Márquez, Fausto Pedro & Pinar Pérez, Jesús María, 2022. "A techno-economic model for avoiding conflicts of interest between owners of offshore wind farms and maintenance suppliers," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    2. Xiaodong Li & Xiang Song & Djamila Ouelhadj, 2023. "A Cost Optimisation Model for Maintenance Planning in Offshore Wind Farms with Wind Speed Dependent Failure Rates," Mathematics, MDPI, vol. 11(13), pages 1-21, June.
    3. Alberto Pliego Marug'an & Fausto Pedro Garc'ia M'arquez & Jes'us Mar'ia Pinar P'erez, 2024. "A techno-economic model for avoiding conflicts of interest between owners of offshore wind farms and maintenance suppliers," Papers 2401.08251, arXiv.org.
    4. Ren, Zhengru & Verma, Amrit Shankar & Li, Ye & Teuwen, Julie J.E. & Jiang, Zhiyu, 2021. "Offshore wind turbine operations and maintenance: A state-of-the-art review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
    5. Sadeghian, Omid & Mohammadpour Shotorbani, Amin & Mohammadi-Ivatloo, Behnam & Sadiq, Rehan & Hewage, Kasun, 2021. "Risk-averse maintenance scheduling of generation units in combined heat and power systems with demand response," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    6. Leimeister, Mareike & Kolios, Athanasios, 2018. "A review of reliability-based methods for risk analysis and their application in the offshore wind industry," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 1065-1076.
    7. Petchrompo, Sanyapong & Parlikad, Ajith Kumar, 2019. "A review of asset management literature on multi-asset systems," Reliability Engineering and System Safety, Elsevier, vol. 181(C), pages 181-201.
    8. Maheri, Alireza, 2014. "A critical evaluation of deterministic methods in size optimisation of reliable and cost effective standalone hybrid renewable energy systems," Reliability Engineering and System Safety, Elsevier, vol. 130(C), pages 159-174.
    9. Gilbert, Ciaran & Browell, Jethro & McMillan, David, 2021. "Probabilistic access forecasting for improved offshore operations," International Journal of Forecasting, Elsevier, vol. 37(1), pages 134-150.
    10. Li, He & Teixeira, Angelo P. & Guedes Soares, C., 2020. "A two-stage Failure Mode and Effect Analysis of offshore wind turbines," Renewable Energy, Elsevier, vol. 162(C), pages 1438-1461.
    11. Shafiee, Mahmood & Sørensen, John Dalsgaard, 2019. "Maintenance optimization and inspection planning of wind energy assets: Models, methods and strategies," Reliability Engineering and System Safety, Elsevier, vol. 192(C).
    12. Fallahi, F. & Bakir, I. & Yildirim, M. & Ye, Z., 2022. "A chance-constrained optimization framework for wind farms to manage fleet-level availability in condition based maintenance and operations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    13. Amorosi, Lavinia & Fischetti, Martina & Paradiso, Rosario & Roberti, Roberto, 2024. "Optimization models for the installation planning of offshore wind farms," European Journal of Operational Research, Elsevier, vol. 315(3), pages 1182-1196.
    14. Neves-Moreira, Fábio & Veldman, Jasper & Teunter, Ruud H., 2021. "Service operation vessels for offshore wind farm maintenance: Optimal stock levels," Renewable and Sustainable Energy Reviews, Elsevier, vol. 146(C).
    15. Li, Xiaodong & Ouelhadj, Djamila & Song, Xiang & Jones, Dylan & Wall, Graham & Howell, Kerry E. & Igwe, Paul & Martin, Simon & Song, Dongping & Pertin, Emmanuel, 2016. "A decision support system for strategic maintenance planning in offshore wind farms," Renewable Energy, Elsevier, vol. 99(C), pages 784-799.
    16. Stålhane, Magnus & Halvorsen-Weare, Elin E. & Nonås, Lars Magne & Pantuso, Giovanni, 2019. "Optimizing vessel fleet size and mix to support maintenance operations at offshore wind farms," European Journal of Operational Research, Elsevier, vol. 276(2), pages 495-509.
    17. Irawan, Chandra Ade & Ouelhadj, Djamila & Jones, Dylan & Stålhane, Magnus & Sperstad, Iver Bakken, 2017. "Optimisation of maintenance routing and scheduling for offshore wind farms," European Journal of Operational Research, Elsevier, vol. 256(1), pages 76-89.
    18. Chandra Ade Irawan & Dylan Jones, 2019. "Formulation and solution of a two-stage capacitated facility location problem with multilevel capacities," Annals of Operations Research, Springer, vol. 272(1), pages 41-67, January.
    19. Wang, Jianzhou & Xiong, Shenghua, 2014. "A hybrid forecasting model based on outlier detection and fuzzy time series – A case study on Hainan wind farm of China," Energy, Elsevier, vol. 76(C), pages 526-541.
    20. Bolívar, Fernando & Duran, Miguel A. & Lozano-Vivas, Ana, 2023. "Bank business models, size, and profitability," Finance Research Letters, Elsevier, vol. 53(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:200:y:2020:i:c:s0951832019306209. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.