Nothing Special   »   [go: up one dir, main page]

IDEAS home Printed from https://ideas.repec.org/a/eee/stapro/v81y2011i8p1078-1085.html
   My bibliography  Save this article

The mean-variance ratio test--A complement to the coefficient of variation test and the Sharpe ratio test

Author

Listed:
  • Bai, Zhidong
  • Wang, Keyan
  • Wong, Wing-Keung
Abstract
To circumvent the limitations of the tests for coefficients of variation and Sharpe ratios, we develop the mean-variance ratio statistic for testing the equality of mean-variance ratios, and prove that our proposed statistic is the uniformly most powerful unbiased statistic. In addition, we illustrate the applicability of our proposed test for comparing the performances of stock indices.

Suggested Citation

  • Bai, Zhidong & Wang, Keyan & Wong, Wing-Keung, 2011. "The mean-variance ratio test--A complement to the coefficient of variation test and the Sharpe ratio test," Statistics & Probability Letters, Elsevier, vol. 81(8), pages 1078-1085, August.
  • Handle: RePEc:eee:stapro:v:81:y:2011:i:8:p:1078-1085
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167715211000812
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Harry Markowitz, 1952. "Portfolio Selection," Journal of Finance, American Finance Association, vol. 7(1), pages 77-91, March.
    2. Egozcue, Martin & Wong, Wing-Keung, 2010. "Gains from diversification on convex combinations: A majorization and stochastic dominance approach," European Journal of Operational Research, Elsevier, vol. 200(3), pages 893-900, February.
    3. Wong, Wing-Keung, 2007. "Stochastic dominance and mean-variance measures of profit and loss for business planning and investment," European Journal of Operational Research, Elsevier, vol. 182(2), pages 829-843, October.
    4. Jobson, J D & Korkie, Bob M, 1981. "Performance Hypothesis Testing with the Sharpe and Treynor Measures," Journal of Finance, American Finance Association, vol. 36(4), pages 889-908, September.
    5. Wing-Keung Wong & Chenghu Ma, 2008. "Preferences over location-scale family," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 37(1), pages 119-146, October.
    6. Oliver Linton & Esfandiar Maasoumi & Yoon-Jae Whang, 2005. "Consistent Testing for Stochastic Dominance under General Sampling Schemes," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 72(3), pages 735-765.
    7. G. Hanoch & H. Levy, 1969. "The Efficiency Analysis of Choices Involving Risk," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 36(3), pages 335-346.
    8. Wong, Wing-Keung & Bian, Guorui, 2005. "Estimating parameters in autoregressive models with asymmetric innovations," Statistics & Probability Letters, Elsevier, vol. 71(1), pages 61-70, January.
    9. Hamilton, James D. & Susmel, Raul, 1994. "Autoregressive conditional heteroskedasticity and changes in regime," Journal of Econometrics, Elsevier, vol. 64(1-2), pages 307-333.
    10. Wong, Wing-Keung, 2007. "Stochastic dominance and mean-variance measures of profit and loss for business planning and investment," European Journal of Operational Research, Elsevier, vol. 182(2), pages 829-843, October.
    11. Bai, Z. D. & Guo, Meihui, 1999. "A paradox in least-squares estimation of linear regression models," Statistics & Probability Letters, Elsevier, vol. 42(2), pages 167-174, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Nguyen Huu Hau & Tran Trung Tinh & Hoa Anh Tuong & Wing-Keung Wong, 2020. "Review of Matrix Theory with Applications in Education and Decision Sciences," Advances in Decision Sciences, Asia University, Taiwan, vol. 24(1), pages 28-69, March.
    2. Broll, Udo & Wong, Wing-Keung & Wu, Mojia, 2013. "Banking Firm and Two-Moment Decision Making," MPRA Paper 51687, University Library of Munich, Germany.
    3. Chia-Lin Chang & Michael McAleer & Wing-Keung Wong, 2018. "Management Information, Decision Sciences, and Financial Economics: A Connection," Tinbergen Institute Discussion Papers 18-004/III, Tinbergen Institute.
    4. Cuizhen Niu & Xu Guo & Wangli Xu & Lixing Zhu, 2014. "Testing equality of shape parameters in several inverse Gaussian populations," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 77(6), pages 795-809, August.
    5. Zhihui Lv & Amanda M. Y. Chu & Wing Keung Wong & Thomas C. Chiang, 2021. "The maximum-return-and-minimum-volatility effect: evidence from choosing risky and riskless assets to form a portfolio," Risk Management, Palgrave Macmillan, vol. 23(1), pages 97-122, June.
    6. Chia-Lin Chang & Michael McAleer & Wing-Keung Wong, 2018. "Big Data, Computational Science, Economics, Finance, Marketing, Management, and Psychology: Connections," JRFM, MDPI, vol. 11(1), pages 1-29, March.
    7. Chia-Lin Chang & Michael McAleer & Wing-Keung Wong, 2018. "Decision Sciences, Economics, Finance, Business, Computing, And Big Data: Connections," Advances in Decision Sciences, Asia University, Taiwan, vol. 22(1), pages 36-94, December.
    8. Kim-Hung Pho & Tuan-Kiet Tran & Thi Diem-Chinh Ho & Wing-Keung Wong, 2019. "Optimal Solution Techniques in Decision Sciences A Review," Advances in Decision Sciences, Asia University, Taiwan, vol. 23(1), pages 114-161, March.
    9. Bai, Zhidong & Phoon, Kok Fai & Wang, Keyan & Wong, Wing-Keung, 2013. "The performance of commodity trading advisors: A mean-variance-ratio test approach," The North American Journal of Economics and Finance, Elsevier, vol. 25(C), pages 188-201.
    10. Chia-Lin Chang & Michael McAleer & Wing-Keung Wong, 2016. "Management Science, Economics and Finance: A Connection," Tinbergen Institute Discussion Papers 16-040/III, Tinbergen Institute.
    11. Chang, C-L. & McAleer, M.J. & Wong, W.-K., 2018. "Decision Sciences, Economics, Finance, Business, Computing, and Big Data: Connections," Econometric Institute Research Papers 18-024/III, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    12. Eric S. Fung & Kin Lam & Tak-Kuen Siu & Wing-Keung Wong, 2011. "A Pseudo-Bayesian Model for Stock Returns In Financial Crises," JRFM, MDPI, vol. 4(1), pages 1-31, December.
    13. Leung, Pui-Lam & Ng, Hon-Yip & Wong, Wing-Keung, 2012. "An improved estimation to make Markowitz’s portfolio optimization theory users friendly and estimation accurate with application on the US stock market investment," European Journal of Operational Research, Elsevier, vol. 222(1), pages 85-95.
    14. Bai, Zhidong & Li, Hua & Wong, Wing-Keung, 2013. "The best estimation for high-dimensional Markowitz mean-variance optimization," MPRA Paper 43862, University Library of Munich, Germany.
    15. Kim-Hung Pho & Thi Diem-Chinh Ho & Tuan-Kiet Tran & Wing-Keung Wong, 2019. "Moment Generating Function, Expectation And Variance Of Ubiquitous Distributions With Applications In Decision Sciences: A Review," Advances in Decision Sciences, Asia University, Taiwan, vol. 23(2), pages 65-150, June.
    16. Zura Kakushadze & Willie Yu, 2017. "Notes on Fano Ratio and Portfolio Optimization," Papers 1711.10640, arXiv.org, revised Apr 2018.
    17. Chia-Lin Chang & Michael McAleer & Wing-Keung Wong, 2018. "Big Data, Computational Science, Economics, Finance, Marketing, Management, and Psychology: Connections," Journal of Risk and Financial Management, MDPI, Open Access Journal, vol. 11(1), pages 1-29, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lean, Hooi Hooi & McAleer, Michael & Wong, Wing-Keung, 2010. "Market efficiency of oil spot and futures: A mean-variance and stochastic dominance approach," Energy Economics, Elsevier, vol. 32(5), pages 979-986, September.
    2. Bai, Zhidong & Phoon, Kok Fai & Wang, Keyan & Wong, Wing-Keung, 2013. "The performance of commodity trading advisors: A mean-variance-ratio test approach," The North American Journal of Economics and Finance, Elsevier, vol. 25(C), pages 188-201.
    3. Zhidong Bai & Hua Li & Michael McAleer & Wing-Keung Wong, 2015. "Stochastic dominance statistics for risk averters and risk seekers: an analysis of stock preferences for USA and China," Quantitative Finance, Taylor & Francis Journals, vol. 15(5), pages 889-900, May.
    4. Hooi Hooi Lean & Michael McAleer & Wing-Keung Wong, 2010. "Market Efficiency of Oil Spot and Futures: A Stochastic Dominance Approach," CIRJE F-Series CIRJE-F-705, CIRJE, Faculty of Economics, University of Tokyo.
    5. Lean, H.H. & McAleer, M.J. & Wong, W.-K., 2010. "Investor preferences for oil spot and futures based on mean-variance and stochastic dominance," Econometric Institute Research Papers EI 2010-37, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    6. Hooi Hooi Lean & Michael McAleer & Wing-Keung Wong, 2013. "Risk-averse and Risk-seeking Investor Preferences for Oil Spot and Futures," Documentos de Trabajo del ICAE 2013-31, Universidad Complutense de Madrid, Facultad de Ciencias Económicas y Empresariales, Instituto Complutense de Análisis Económico, revised Aug 2013.
    7. Chia-Lin Chang & Michael McAleer & Wing-Keung Wong, 2018. "Big Data, Computational Science, Economics, Finance, Marketing, Management, and Psychology: Connections," JRFM, MDPI, vol. 11(1), pages 1-29, March.
    8. Chia-Lin Chang & Michael McAleer & Wing-Keung Wong, 2018. "Decision Sciences, Economics, Finance, Business, Computing, and Big Data: Connections," Documentos de Trabajo del ICAE 2018-09, Universidad Complutense de Madrid, Facultad de Ciencias Económicas y Empresariales, Instituto Complutense de Análisis Económico.
    9. Chia-Lin Chang & Michael McAleer & Wing-Keung Wong, 2016. "Management science, economics and finance: A connection," Documentos de Trabajo del ICAE 2016-07, Universidad Complutense de Madrid, Facultad de Ciencias Económicas y Empresariales, Instituto Complutense de Análisis Económico.
    10. Chia-Lin Chang & Michael McAleer & Wing-Keung Wong, 2018. "Decision Sciences, Economics, Finance, Business, Computing, And Big Data: Connections," Advances in Decision Sciences, Asia University, Taiwan, vol. 22(1), pages 36-94, December.
    11. Lean, Hooi Hooi & McAleer, Michael & Wong, Wing-Keung, 2015. "Preferences of risk-averse and risk-seeking investors for oil spot and futures before, during and after the Global Financial Crisis," International Review of Economics & Finance, Elsevier, vol. 40(C), pages 204-216.
    12. Chia-Lin Chang & Michael McAleer & Wing-Keung Wong, 2018. "Big Data, Computational Science, Economics, Finance, Marketing, Management, and Psychology: Connections," Journal of Risk and Financial Management, MDPI, Open Access Journal, vol. 11(1), pages 1-29, March.
    13. Niu, Cuizhen & Wong, Wing-Keung & Xu, Qunfang, 2017. "Higher-Order Risk Measure and (Higher-Order) Stochastic Dominance," MPRA Paper 75948, University Library of Munich, Germany.
    14. Kim-Hung Pho & Tuan-Kiet Tran & Thi Diem-Chinh Ho & Wing-Keung Wong, 2019. "Optimal Solution Techniques in Decision Sciences A Review," Advances in Decision Sciences, Asia University, Taiwan, vol. 23(1), pages 114-161, March.
    15. Ephraim Clark & Zhuo Qiao & Wing-Keung Wong, 2016. "Theories Of Risk: Testing Investor Behavior On The Taiwan Stock And Stock Index Futures Markets," Economic Inquiry, Western Economic Association International, vol. 54(2), pages 907-924, April.
    16. Nguyen Huu Hau & Tran Trung Tinh & Hoa Anh Tuong & Wing-Keung Wong, 2020. "Review of Matrix Theory with Applications in Education and Decision Sciences," Advances in Decision Sciences, Asia University, Taiwan, vol. 24(1), pages 28-69, March.
    17. Guo, Xu & Wong, Wing-Keung & Zhu, Lixing, 2013. "Two-moment decision model for location-scale family with background asset," MPRA Paper 43864, University Library of Munich, Germany.
    18. Leung, Pui-Lam & Ng, Hon-Yip & Wong, Wing-Keung, 2012. "An improved estimation to make Markowitz’s portfolio optimization theory users friendly and estimation accurate with application on the US stock market investment," European Journal of Operational Research, Elsevier, vol. 222(1), pages 85-95.
    19. Hooi Lean & Kok Phoon & Wing-Keung Wong, 2013. "Stochastic dominance analysis of CTA funds," Review of Quantitative Finance and Accounting, Springer, vol. 40(1), pages 155-170, January.
    20. Liesiö, Juuso & Xu, Peng & Kuosmanen, Timo, 2020. "Portfolio diversification based on stochastic dominance under incomplete probability information," European Journal of Operational Research, Elsevier, vol. 286(2), pages 755-768.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:81:y:2011:i:8:p:1078-1085. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.