Nothing Special   »   [go: up one dir, main page]

IDEAS home Printed from https://ideas.repec.org/a/eee/mateco/v78y2018icp150-162.html
   My bibliography  Save this article

Quantum-like model of subjective expected utility

Author

Listed:
  • Basieva, Irina
  • Khrennikova, Polina
  • Pothos, Emmanuel M.
  • Asano, Masanari
  • Khrennikov, Andrei
Abstract
We present a very general quantum-like model of lottery selection based on representation of beliefs of an agent by pure quantum states. Subjective probabilities are mathematically realized in the framework of quantum probability (QP). Utility functions are borrowed from the classical decision theory. But in the model they are represented not only by their values. Heuristically one can say that each value ui=u(xi) is surrounded by a cloud of information related to the event (A,xi). An agent processes this information by using the rules of quantum information and QP. This process is very complex; it combines counterfactual reasoning for comparison between preferences for different outcomes of lotteries which are in general complementary. These comparisons induce interference type effects (constructive or destructive). The decision process is mathematically represented by the comparison operator and the outcome of this process is determined by the sign of the value of corresponding quadratic form on the belief state. This operational process can be decomposed into a few subprocesses. Each of them can be formally treated as a comparison of subjective expected utilities and interference factors (the latter express, in particular, risks related to lottery selection). The main aim of this paper is to analyze the mathematical structure of these processes in the most general situation: representation of lotteries by noncommuting operators.

Suggested Citation

  • Basieva, Irina & Khrennikova, Polina & Pothos, Emmanuel M. & Asano, Masanari & Khrennikov, Andrei, 2018. "Quantum-like model of subjective expected utility," Journal of Mathematical Economics, Elsevier, vol. 78(C), pages 150-162.
  • Handle: RePEc:eee:mateco:v:78:y:2018:i:c:p:150-162
    DOI: 10.1016/j.jmateco.2018.02.001
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S030440681830017X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jmateco.2018.02.001?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Tversky, Amos & Kahneman, Daniel, 1992. "Advances in Prospect Theory: Cumulative Representation of Uncertainty," Journal of Risk and Uncertainty, Springer, vol. 5(4), pages 297-323, October.
    2. Samuelson, Paul A, 1977. "St. Petersburg Paradoxes: Defanged, Dissected, and Historically Described," Journal of Economic Literature, American Economic Association, vol. 15(1), pages 24-55, March.
    3. Itzhak Gilboa & David Schmeidler, 1992. "Additive Representation of Non-Additive Measures and the Choquet Integral," Discussion Papers 985, Northwestern University, Center for Mathematical Studies in Economics and Management Science.
    4. Gilboa,Itzhak, 2009. "Theory of Decision under Uncertainty," Cambridge Books, Cambridge University Press, number 9780521517324, September.
    5. Khrennikova, Polina, 2016. "Application of quantum master equation for long-term prognosis of asset-prices," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 450(C), pages 253-263.
    6. Thomas Boyer-Kassem & Sébastien Duchêne & Eric Guerci, 2016. "Quantum-like models cannot account for the conjunction fallacy," Theory and Decision, Springer, vol. 81(4), pages 479-510, November.
    7. Daniel Kahneman & Amos Tversky, 2013. "Prospect Theory: An Analysis of Decision Under Risk," World Scientific Book Chapters, in: Leonard C MacLean & William T Ziemba (ed.), HANDBOOK OF THE FUNDAMENTALS OF FINANCIAL DECISION MAKING Part I, chapter 6, pages 99-127, World Scientific Publishing Co. Pte. Ltd..
    8. Khrennikov, Andrei, 2015. "Quantum version of Aumann’s approach to common knowledge: Sufficient conditions of impossibility to agree on disagree," Journal of Mathematical Economics, Elsevier, vol. 60(C), pages 89-104.
    9. Raymond J. Hawkins & B. Roy Frieden, 2012. "Asymmetric Information and Quantization in Financial Economics," International Journal of Mathematics and Mathematical Sciences, Hindawi, vol. 2012, pages 1-11, December.
    10. Schmeidler, David, 1989. "Subjective Probability and Expected Utility without Additivity," Econometrica, Econometric Society, vol. 57(3), pages 571-587, May.
    11. Peter Klibanoff & Massimo Marinacci & Sujoy Mukerji, 2005. "A Smooth Model of Decision Making under Ambiguity," Econometrica, Econometric Society, vol. 73(6), pages 1849-1892, November.
    12. Daniel Kahneman, 2003. "Maps of Bounded Rationality: Psychology for Behavioral Economics," American Economic Review, American Economic Association, vol. 93(5), pages 1449-1475, December.
    13. Daniel Kahneman & Richard H. Thaler, 2006. "Anomalies: Utility Maximization and Experienced Utility," Journal of Economic Perspectives, American Economic Association, vol. 20(1), pages 221-234, Winter.
    14. Gilboa, Itzhak & Schmeidler, David, 1989. "Maxmin expected utility with non-unique prior," Journal of Mathematical Economics, Elsevier, vol. 18(2), pages 141-153, April.
    15. Emmanuel Haven & Andrei Khrennikov & Terry Robinson, 2017. "Quantum Methods in Social Science:A First Course," World Scientific Books, World Scientific Publishing Co. Pte. Ltd., number q0080, February.
    16. Marc Rieger & Mei Wang, 2006. "Cumulative prospect theory and the St. Petersburg paradox," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 28(3), pages 665-679, August.
    17. Brandenburger, Adam, 2010. "The relationship between quantum and classical correlation in games," Games and Economic Behavior, Elsevier, vol. 69(1), pages 175-183, May.
    18. Haven, Emmanuel & Sozzo, Sandro, 2016. "A generalized probability framework to model economic agents' decisions under uncertainty," International Review of Financial Analysis, Elsevier, vol. 47(C), pages 297-303.
    19. Machina, Mark J, 1989. "Dynamic Consistency and Non-expected Utility Models of Choice under Uncertainty," Journal of Economic Literature, American Economic Association, vol. 27(4), pages 1622-1668, December.
    20. Masanari Asano & Irina Basieva & Andrei Khrennikov & Masanori Ohya & Yoshiharu Tanaka, 2017. "A Quantum-like Model of Selection Behavior," Papers 1705.08536, arXiv.org.
    21. Pavlo R. Blavatskyy, 2005. "Back to the St. Petersburg Paradox?," Management Science, INFORMS, vol. 51(4), pages 677-678, April.
    22. Daniel Ellsberg, 1961. "Risk, Ambiguity, and the Savage Axioms," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 75(4), pages 643-669.
    23. Machina, Mark J, 1982. ""Expected Utility" Analysis without the Independence Axiom," Econometrica, Econometric Society, vol. 50(2), pages 277-323, March.
    24. George Wu & Richard Gonzalez, 1996. "Curvature of the Probability Weighting Function," Management Science, INFORMS, vol. 42(12), pages 1676-1690, December.
    25. Drazen Prelec, 1998. "The Probability Weighting Function," Econometrica, Econometric Society, vol. 66(3), pages 497-528, May.
    26. Mark Machina, 2005. "‘Expected utility / subjective probability’ analysis without the sure-thing principle or probabilistic sophistication," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 26(1), pages 1-62, July.
    27. Machina, Mark J, 1987. "Choice under Uncertainty: Problems Solved and Unsolved," Journal of Economic Perspectives, American Economic Association, vol. 1(1), pages 121-154, Summer.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ismaël Rafaï & Sébastien Duchêne & Eric Guerci & Irina Basieva & Andrei Khrennikov, 2022. "The triple-store experiment: a first simultaneous test of classical and quantum probabilities in choice over menus," Theory and Decision, Springer, vol. 92(2), pages 387-406, March.
    2. Di Salvo, Rosa & Gorgone, Matteo & Oliveri, Francesco, 2020. "Generalized Hamiltonian for a two-mode fermionic model and asymptotic equilibria," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 540(C).
    3. Charles-Cadogan, G., 2021. "Utility Representation in Abstract Wiener Space," CRETA Online Discussion Paper Series 70, Centre for Research in Economic Theory and its Applications CRETA.
    4. Jingmei Xiao & Mei Cai & Yu Gao, 2022. "A VIKOR-Based Linguistic Multi-Attribute Group Decision-Making Model in a Quantum Decision Scenario," Mathematics, MDPI, vol. 10(13), pages 1-23, June.
    5. Charles-Cadogan, G., 2018. "Probability interference in expected utility theory," Journal of Mathematical Economics, Elsevier, vol. 78(C), pages 163-175.
    6. Eric Ghysels & Jack Morgan, 2024. "On Quantum Ambiguity and Potential Exponential Computational Speed-Ups to Solving Dynamic Asset Pricing Models," Papers 2405.01479, arXiv.org, revised May 2024.
    7. Haoran Zheng & Jing Bai, 2024. "Quantum Leap: A Price Leap Mechanism in Financial Markets," Mathematics, MDPI, vol. 12(2), pages 1-27, January.
    8. Charles-Cadogan, G., 2021. "Incoherent Preferences," CRETA Online Discussion Paper Series 69, Centre for Research in Economic Theory and its Applications CRETA.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Haven, Emmanuel & Khrennikova, Polina, 2018. "A quantum-probabilistic paradigm: Non-consequential reasoning and state dependence in investment choice," Journal of Mathematical Economics, Elsevier, vol. 78(C), pages 186-197.
    2. Salvatore Greco & Fabio Rindone, 2014. "The bipolar Choquet integral representation," Theory and Decision, Springer, vol. 77(1), pages 1-29, June.
    3. Laurent Denant-Boemont & Olivier L’Haridon, 2013. "La rationalité à l'épreuve de l'économie comportementale," Revue française d'économie, Presses de Sciences-Po, vol. 0(2), pages 35-89.
    4. Ali al-Nowaihi & Sanjit Dhami & Mengxing Wei, 2018. "Quantum Decision Theory and the Ellsberg Paradox," CESifo Working Paper Series 7158, CESifo.
    5. Ali al-Nowaihi & Sanjit Dhami, 2016. "The Ellsberg paradox: A challenge to quantum decision theory?," Discussion Papers in Economics 16/08, Division of Economics, School of Business, University of Leicester.
    6. Phillips Peter J. & Pohl Gabriela, 2018. "The Deferral of Attacks: SP/A Theory as a Model of Terrorist Choice when Losses Are Inevitable," Open Economics, De Gruyter, vol. 1(1), pages 71-85, February.
    7. Simone Cerreia‐Vioglio & David Dillenberger & Pietro Ortoleva, 2015. "Cautious Expected Utility and the Certainty Effect," Econometrica, Econometric Society, vol. 83, pages 693-728, March.
    8. Mohammed Abdellaoui & Horst Zank, 2023. "Source and rank-dependent utility," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 75(4), pages 949-981, May.
    9. Gul, Faruk & Pesendorfer, Wolfgang, 2015. "Hurwicz expected utility and subjective sources," Journal of Economic Theory, Elsevier, vol. 159(PA), pages 465-488.
    10. Border, Kim C. & Segal, Uzi, 1997. "Coherent Odds and Subjective Probability," University of Western Ontario, Departmental Research Report Series 9717, University of Western Ontario, Department of Economics.
    11. Zvi Safra & Uzi Segal, 2005. "Are Universal Preferences Possible? Calibration Results for Non-Expected Utility Theories," Boston College Working Papers in Economics 633, Boston College Department of Economics.
    12. Laure Cabantous & Denis Hilton, 2006. "De l'aversion à l'ambiguïté aux attitudes face à l'ambiguïté. Les apports d'une perspective psychologique en économie," Revue économique, Presses de Sciences-Po, vol. 57(2), pages 259-280.
    13. Eddie Dekel & Barton L. Lipman, 2010. "How (Not) to Do Decision Theory," Annual Review of Economics, Annual Reviews, vol. 2(1), pages 257-282, September.
    14. Florian H. Schneider & Martin Schonger, 2019. "An Experimental Test of the Anscombe–Aumann Monotonicity Axiom," Management Science, INFORMS, vol. 65(4), pages 1667-1677, April.
    15. Andrew J. Keith & Darryl K. Ahner, 2021. "A survey of decision making and optimization under uncertainty," Annals of Operations Research, Springer, vol. 300(2), pages 319-353, May.
    16. Izhakian, Yehuda, 2017. "Expected utility with uncertain probabilities theory," Journal of Mathematical Economics, Elsevier, vol. 69(C), pages 91-103.
    17. Arthur E. Attema & Han Bleichrodt & Olivier L'Haridon, 2018. "Ambiguity preferences for health," Health Economics, John Wiley & Sons, Ltd., vol. 27(11), pages 1699-1716, November.
    18. Li, Chen & Turmunkh, Uyanga & Wakker, Peter P., 2020. "Social and strategic ambiguity versus betrayal aversion," Games and Economic Behavior, Elsevier, vol. 123(C), pages 272-287.
    19. Stefan Trautmann & Peter P. Wakker, 2018. "Making the Anscombe-Aumann approach to ambiguity suitable for descriptive applications," Journal of Risk and Uncertainty, Springer, vol. 56(1), pages 83-116, February.
    20. Katarzyna M. Werner & Horst Zank, 2019. "A revealed reference point for prospect theory," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 67(4), pages 731-773, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:mateco:v:78:y:2018:i:c:p:150-162. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/jmateco .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.