Nothing Special   »   [go: up one dir, main page]

IDEAS home Printed from https://ideas.repec.org/a/eee/jetheo/v67y1995i1p129-152.html
   My bibliography  Save this article

Repeated Games with Asymptotically Finite Horizons

Author

Listed:
  • Bernheim B. Douglas
  • Dasgupta Aniruddha
Abstract
No abstract is available for this item.

Suggested Citation

  • Bernheim B. Douglas & Dasgupta Aniruddha, 1995. "Repeated Games with Asymptotically Finite Horizons," Journal of Economic Theory, Elsevier, vol. 67(1), pages 129-152, October.
  • Handle: RePEc:eee:jetheo:v:67:y:1995:i:1:p:129-152
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0022-0531(85)71068-X
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mathias Herzing, 2011. "Does hidden information make trade liberalization more fragile?," Canadian Journal of Economics, Canadian Economics Association, vol. 44(2), pages 561-579, May.
    2. Stähler, Frank & Wagner, Friedrich, 1998. "Cooperation in a resource extraction game," Kiel Working Papers 846, Kiel Institute for the World Economy (IfW Kiel).
    3. Bernergård, Axel, 2019. "Self-control problems and the folk theorem," Journal of Economic Behavior & Organization, Elsevier, vol. 163(C), pages 332-347.
    4. Jean-Pierre Benoît & Vijay Krishna, 1996. "The Folk Theorems for Repeated Games - A Synthesis," Discussion Papers 96-03, University of Copenhagen. Department of Economics.
    5. Arribas, I. & Urbano, A., 2005. "Repeated games with probabilistic horizon," Mathematical Social Sciences, Elsevier, vol. 50(1), pages 39-60, July.
    6. Yuichiro Kamada & Michihiro Kandori, 2020. "Revision Games," Econometrica, Econometric Society, vol. 88(4), pages 1599-1630, July.
    7. Jones, Michael A., 1998. "Cones of cooperation, Perron-Frobenius Theory and the indefinitely repeated Prisoners' Dilemma," Journal of Mathematical Economics, Elsevier, vol. 30(2), pages 187-206, September.
    8. Yves Guéron, 2019. "Repeated Games with Asymptotically Finite Horizon and Imperfect Public Monitoring," Korean Economic Review, Korean Economic Association, vol. 35, pages 109-123.
    9. Takahashi, Satoru, 2005. "Infinite horizon common interest games with perfect information," Games and Economic Behavior, Elsevier, vol. 53(2), pages 231-247, November.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jetheo:v:67:y:1995:i:1:p:129-152. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/622869 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.