Nothing Special   »   [go: up one dir, main page]

IDEAS home Printed from https://ideas.repec.org/a/eee/jomega/v96y2020ics0305048318311654.html
   My bibliography  Save this article

Consumer preference analysis: A data-driven multiple criteria approach integrating online information

Author

Listed:
  • Guo, Mengzhuo
  • Liao, Xiuwu
  • Liu, Jiapeng
  • Zhang, Qingpeng
Abstract
Multiple criteria approaches can assist the product manager to know the consumer preferences in the context of e-commerce. Consumer preference analysis explains what aspects of a product affect and how they affect a consumer’s purchasing decision. This issue plays an important role in e-commerce platforms from its relevance in marketing decisions such as advertisements, recommendations and promotions. In this regard, we propose a data-driven multiple criteria decision aiding (MCDA) approach to integrate online information, such as explicit (e.g., reviews and ratings) and implicit (e.g., clicks and purchases) feedback from consumers. However, MCDA approaches present a critical challenge that even an experienced product manager could find it difficult to pre-define the criteria on which a product is evaluated. To address this issue, our proposed approach first utilizes text-mining techniques to assist the product manager identify the criteria, and then determines and collects the relative importance of the criteria and their values. Given the criteria information, we use a sampling process to provide two indices, the consumer preference index and rank acceptability index. The first index helps in prioritizing the pairwise comparisons of products, while the second one helps in deriving a default ranking list for first-time-registered consumers. We record the products viewed by consumers and generate their preference information in the form of pairwise comparisons for analyses within an aggregation-disaggregation paradigm. We also provide a representative value function to help the product manager gain insight into the preferences. Finally, we describe how a real-world application including the product manager and consumers exploits the proposed approach on an e-commerce platform to take a large step toward aiding more realistic and data-driven multiple criteria decision making.

Suggested Citation

  • Guo, Mengzhuo & Liao, Xiuwu & Liu, Jiapeng & Zhang, Qingpeng, 2020. "Consumer preference analysis: A data-driven multiple criteria approach integrating online information," Omega, Elsevier, vol. 96(C).
  • Handle: RePEc:eee:jomega:v:96:y:2020:i:c:s0305048318311654
    DOI: 10.1016/j.omega.2019.05.010
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0305048318311654
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.omega.2019.05.010?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Greco, Salvatore & Mousseau, Vincent & Slowinski, Roman, 2010. "Multiple criteria sorting with a set of additive value functions," European Journal of Operational Research, Elsevier, vol. 207(3), pages 1455-1470, December.
    2. Chunhua Wu & Hai Che & Tat Y. Chan & Xianghua Lu, 2015. "The Economic Value of Online Reviews," Marketing Science, INFORMS, vol. 34(5), pages 739-754, September.
    3. Corrente, Salvatore & Greco, Salvatore & Ishizaka, Alessio, 2016. "Combining analytical hierarchy process and Choquet integral within non-additive robust ordinal regression," Omega, Elsevier, vol. 61(C), pages 2-18.
    4. Bous, Géraldine & Fortemps, Philippe & Glineur, François & Pirlot, Marc, 2010. "ACUTA: A novel method for eliciting additive value functions on the basis of holistic preference statements," European Journal of Operational Research, Elsevier, vol. 206(2), pages 435-444, October.
    5. Jacquet-Lagreze, E. & Siskos, J., 1982. "Assessing a set of additive utility functions for multicriteria decision-making, the UTA method," European Journal of Operational Research, Elsevier, vol. 10(2), pages 151-164, June.
    6. Keeney,Ralph L. & Raiffa,Howard, 1993. "Decisions with Multiple Objectives," Cambridge Books, Cambridge University Press, number 9780521438834, October.
    7. repec:dau:papers:123456789/2944 is not listed on IDEAS
    8. Vivek F. Farias & Andrew A. L, 2019. "Learning Preferences with Side Information," Management Science, INFORMS, vol. 65(7), pages 3131-3149, July.
    9. Tervonen, Tommi & Lahdelma, Risto, 2007. "Implementing stochastic multicriteria acceptability analysis," European Journal of Operational Research, Elsevier, vol. 178(2), pages 500-513, April.
    10. Kadziński, Miłosz & Greco, Salvatore & Słowiński, Roman, 2013. "RUTA: A framework for assessing and selecting additive value functions on the basis of rank related requirements," Omega, Elsevier, vol. 41(4), pages 735-751.
    11. Denguir-Rekik, Afef & Montmain, Jacky & Mauris, Gilles, 2009. "A possibilistic-valued multi-criteria decision-making support for marketing activities in e-commerce: Feedback Based Diagnosis System," European Journal of Operational Research, Elsevier, vol. 195(3), pages 876-888, June.
    12. Mousseau, Vincent & Figueira, Jose & Dias, Luis & Gomes da Silva, Carlos & Climaco, Joao, 2003. "Resolving inconsistencies among constraints on the parameters of an MCDA model," European Journal of Operational Research, Elsevier, vol. 147(1), pages 72-93, May.
    13. Risto Lahdelma & Pekka Salminen, 2001. "SMAA-2: Stochastic Multicriteria Acceptability Analysis for Group Decision Making," Operations Research, INFORMS, vol. 49(3), pages 444-454, June.
    14. Kadziński, Miłosz & Tervonen, Tommi, 2013. "Robust multi-criteria ranking with additive value models and holistic pair-wise preference statements," European Journal of Operational Research, Elsevier, vol. 228(1), pages 169-180.
    15. Ahn, Byeong Seok, 2017. "Approximate weighting method for multiattribute decision problems with imprecise parameters," Omega, Elsevier, vol. 72(C), pages 87-95.
    16. Joachim Büschken & Greg M. Allenby, 2016. "Sentence-Based Text Analysis for Customer Reviews," Marketing Science, INFORMS, vol. 35(6), pages 953-975, November.
    17. Greco, Salvatore & Matarazzo, Benedetto & Slowinski, Roman, 2004. "Axiomatic characterization of a general utility function and its particular cases in terms of conjoint measurement and rough-set decision rules," European Journal of Operational Research, Elsevier, vol. 158(2), pages 271-292, October.
    18. Angilella, Silvia & Greco, Salvatore & Matarazzo, Benedetto, 2010. "Non-additive robust ordinal regression: A multiple criteria decision model based on the Choquet integral," European Journal of Operational Research, Elsevier, vol. 201(1), pages 277-288, February.
    19. Angilella, Silvia & Corrente, Salvatore & Greco, Salvatore & Słowiński, Roman, 2016. "Robust Ordinal Regression and Stochastic Multiobjective Acceptability Analysis in multiple criteria hierarchy process for the Choquet integral preference model," Omega, Elsevier, vol. 63(C), pages 154-169.
    20. Yubo Chen & Jinhong Xie, 2008. "Online Consumer Review: Word-of-Mouth as a New Element of Marketing Communication Mix," Management Science, INFORMS, vol. 54(3), pages 477-491, March.
    21. Ciomek, Krzysztof & Ferretti, Valentina & Kadzinski, Milosz, 2018. "Predictive analytics and disused railways requalification: insights from a Post Factum Analysis perspective," LSE Research Online Documents on Economics 85922, London School of Economics and Political Science, LSE Library.
    22. Zunqiang Zhang & Guoqing Chen & Jin Zhang & Xunhua Guo & Qiang Wei, 2016. "Providing Consistent Opinions from Online Reviews: A Heuristic Stepwise Optimization Approach," INFORMS Journal on Computing, INFORMS, vol. 28(2), pages 236-250, May.
    23. Denis Bouyssou, 1990. "Building Criteria: A Prerequisite for MCDA," Post-Print hal-02920174, HAL.
    24. Butler, John C. & Dyer, James S. & Jia, Jianmin & Tomak, Kerem, 2008. "Enabling e-transactions with multi-attribute preference models," European Journal of Operational Research, Elsevier, vol. 186(2), pages 748-765, April.
    25. Ghaderi, Mohammad & Ruiz, Francisco & Agell, Núria, 2017. "A linear programming approach for learning non-monotonic additive value functions in multiple criteria decision aiding," European Journal of Operational Research, Elsevier, vol. 259(3), pages 1073-1084.
    26. Norman Dalkey & Olaf Helmer, 1963. "An Experimental Application of the DELPHI Method to the Use of Experts," Management Science, INFORMS, vol. 9(3), pages 458-467, April.
    27. Jyrki Wallenius & James S. Dyer & Peter C. Fishburn & Ralph E. Steuer & Stanley Zionts & Kalyanmoy Deb, 2008. "Multiple Criteria Decision Making, Multiattribute Utility Theory: Recent Accomplishments and What Lies Ahead," Management Science, INFORMS, vol. 54(7), pages 1336-1349, July.
    28. Liu, Jiapeng & Liao, Xiuwu & Huang, Wei & Liao, Xianzhao, 2019. "Market segmentation: A multiple criteria approach combining preference analysis and segmentation decision," Omega, Elsevier, vol. 83(C), pages 1-13.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chao Fu & Dongyue Wang & Wenjun Chang, 2023. "Data-driven analysis of influence between radiologists for diagnosis of breast lesions," Annals of Operations Research, Springer, vol. 328(1), pages 419-449, September.
    2. Tong, Huagang & Zhu, Jianjun, 2023. "A parallel approach with the strategy-proof mechanism for large-scale group decision making: An application in industrial internet," European Journal of Operational Research, Elsevier, vol. 311(1), pages 173-195.
    3. Zhao, Meng & Li, Bin & Ren, Jiali & Hao, Zhihua, 2023. "Competition equilibrium of ride-sourcing platforms and optimal government subsidies considering customers’ green preference under peak carbon dioxide emissions," International Journal of Production Economics, Elsevier, vol. 255(C).
    4. Gautam Srivastava & Surajit Bag, 2022. "Antecedents of Buying Behavior Patterns of E-Consumers: Lessons Learnt From the COVID-19 Pandemic," Journal of Electronic Commerce in Organizations (JECO), IGI Global, vol. 20(2), pages 1-23, April.
    5. Liu, Fan & Liao, Huchang & Al-Barakati, Abdullah, 2023. "Physician selection based on user-generated content considering interactive criteria and risk preferences of patients," Omega, Elsevier, vol. 115(C).
    6. Che Xu & Wenjun Chang & Weiyong Liu, 2023. "Data-driven decision model based on local two-stage weighted ensemble learning," Annals of Operations Research, Springer, vol. 325(2), pages 995-1028, June.
    7. Wu, Xingli & Liao, Huchang, 2021. "Modeling personalized cognition of customers in online shopping," Omega, Elsevier, vol. 104(C).
    8. Park, YoungSoo & Sim, Jeongeun & Kim, Bosung, 2022. "Online retail operations with “Try-Before-You-Buy”," European Journal of Operational Research, Elsevier, vol. 299(3), pages 987-1002.
    9. Qin, Jindong & Li, Minxuan & Wang, Xiaojun & Pedrycz, Witold, 2024. "Collaborative emergency decision-making: A framework for deep learning with social media data," International Journal of Production Economics, Elsevier, vol. 267(C).
    10. Huang, Shupeng & Potter, Andrew & Eyers, Daniel & Li, Qinyun, 2021. "The influence of online review adoption on the profitability of capacitated supply chains," Omega, Elsevier, vol. 105(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kadziński, Miłosz & Wójcik, Michał & Ciomek, Krzysztof, 2022. "Review and experimental comparison of ranking and choice procedures for constructing a univocal recommendation in a preference disaggregation setting," Omega, Elsevier, vol. 113(C).
    2. Liu, Jiapeng & Liao, Xiuwu & Huang, Wei & Liao, Xianzhao, 2019. "Market segmentation: A multiple criteria approach combining preference analysis and segmentation decision," Omega, Elsevier, vol. 83(C), pages 1-13.
    3. Cinelli, Marco & Kadziński, Miłosz & Miebs, Grzegorz & Gonzalez, Michael & Słowiński, Roman, 2022. "Recommending multiple criteria decision analysis methods with a new taxonomy-based decision support system," European Journal of Operational Research, Elsevier, vol. 302(2), pages 633-651.
    4. Beccacece, Francesca & Borgonovo, Emanuele & Buzzard, Greg & Cillo, Alessandra & Zionts, Stanley, 2015. "Elicitation of multiattribute value functions through high dimensional model representations: Monotonicity and interactions," European Journal of Operational Research, Elsevier, vol. 246(2), pages 517-527.
    5. Ru, Zice & Liu, Jiapeng & Kadziński, Miłosz & Liao, Xiuwu, 2022. "Bayesian ordinal regression for multiple criteria choice and ranking," European Journal of Operational Research, Elsevier, vol. 299(2), pages 600-620.
    6. Angilella, Silvia & Corrente, Salvatore & Greco, Salvatore, 2015. "Stochastic multiobjective acceptability analysis for the Choquet integral preference model and the scale construction problem," European Journal of Operational Research, Elsevier, vol. 240(1), pages 172-182.
    7. Doumpos, Michael & Zopounidis, Constantin, 2011. "Preference disaggregation and statistical learning for multicriteria decision support: A review," European Journal of Operational Research, Elsevier, vol. 209(3), pages 203-214, March.
    8. Ru, Zice & Liu, Jiapeng & Kadziński, Miłosz & Liao, Xiuwu, 2023. "Probabilistic ordinal regression methods for multiple criteria sorting admitting certain and uncertain preferences," European Journal of Operational Research, Elsevier, vol. 311(2), pages 596-616.
    9. Arcidiacono, Sally Giuseppe & Corrente, Salvatore & Greco, Salvatore, 2021. "Robust stochastic sorting with interacting criteria hierarchically structured," European Journal of Operational Research, Elsevier, vol. 292(2), pages 735-754.
    10. Vetschera, Rudolf, 2017. "Deriving rankings from incomplete preference information: A comparison of different approaches," European Journal of Operational Research, Elsevier, vol. 258(1), pages 244-253.
    11. Kadziński, Miłosz & Tervonen, Tommi, 2013. "Robust multi-criteria ranking with additive value models and holistic pair-wise preference statements," European Journal of Operational Research, Elsevier, vol. 228(1), pages 169-180.
    12. Wu, Xingli & Liao, Huchang, 2023. "Value-driven preference disaggregation analysis for uncertain preference information," Omega, Elsevier, vol. 115(C).
    13. Doumpos, Michael & Zopounidis, Constantin & Galariotis, Emilios, 2014. "Inferring robust decision models in multicriteria classification problems: An experimental analysis," European Journal of Operational Research, Elsevier, vol. 236(2), pages 601-611.
    14. Corrente, Salvatore & Figueira, José Rui & Greco, Salvatore, 2014. "The SMAA-PROMETHEE method," European Journal of Operational Research, Elsevier, vol. 239(2), pages 514-522.
    15. Khaled, Oumaima & Minoux, Michel & Mousseau, Vincent & Michel, Stéphane & Ceugniet, Xavier, 2018. "A multi-criteria repair/recovery framework for the tail assignment problem in airlines," Journal of Air Transport Management, Elsevier, vol. 68(C), pages 137-151.
    16. Guo, Mengzhuo & Zhang, Qingpeng & Liao, Xiuwu & Chen, Frank Youhua & Zeng, Daniel Dajun, 2021. "A hybrid machine learning framework for analyzing human decision-making through learning preferences," Omega, Elsevier, vol. 101(C).
    17. R. Pelissari & M. C. Oliveira & S. Ben Amor & A. Kandakoglu & A. L. Helleno, 2020. "SMAA methods and their applications: a literature review and future research directions," Annals of Operations Research, Springer, vol. 293(2), pages 433-493, October.
    18. Hurson, Christian & Siskos, Yannis, 2014. "A synergy of multicriteria techniques to assess additive value models," European Journal of Operational Research, Elsevier, vol. 238(2), pages 540-551.
    19. Cohen, Sandra & Doumpos, Michael & Neofytou, Evi & Zopounidis, Constantin, 2012. "Assessing financial distress where bankruptcy is not an option: An alternative approach for local municipalities," European Journal of Operational Research, Elsevier, vol. 218(1), pages 270-279.
    20. Silvia Angilella & Marta Bottero & Salvatore Corrente & Valentina Ferretti & Salvatore Greco & Isabella M. Lami, 2016. "Non Additive Robust Ordinal Regression for urban and territorial planning: an application for siting an urban waste landfill," Annals of Operations Research, Springer, vol. 245(1), pages 427-456, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jomega:v:96:y:2020:i:c:s0305048318311654. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/375/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.