Nothing Special   »   [go: up one dir, main page]

IDEAS home Printed from https://ideas.repec.org/a/eee/intfor/v33y2017i4p745-759.html
   My bibliography  Save this article

Predicting recessions with boosted regression trees

Author

Listed:
  • Döpke, Jörg
  • Fritsche, Ulrich
  • Pierdzioch, Christian
Abstract
We use a machine-learning approach known as boosted regression trees (BRT) to reexamine the usefulness of selected leading indicators for predicting recessions. We estimate the BRT approach on German data and study the relative importance of the indicators and their marginal effects on the probability of a recession. Our results show that measures of the short-term interest rate and the term spread are important leading indicators. The recession probability is a nonlinear function of these leading indicators. The BRT approach also helps to uncover the way in which the recession probability depends on the interactions between the leading indicators. While the predictive power of the short-term interest rates has declined over time, the term spread and the stock market have gained in importance. The BRT approach shows a better out-of-sample performance than popular probit approaches.

Suggested Citation

  • Döpke, Jörg & Fritsche, Ulrich & Pierdzioch, Christian, 2017. "Predicting recessions with boosted regression trees," International Journal of Forecasting, Elsevier, vol. 33(4), pages 745-759.
  • Handle: RePEc:eee:intfor:v:33:y:2017:i:4:p:745-759
    DOI: 10.1016/j.ijforecast.2017.02.003
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0169207017300274
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ijforecast.2017.02.003?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Pierdzioch, Christian & Rülke, Jan-Christoph, 2015. "On the directional accuracy of forecasts of emerging market exchange rates," International Review of Economics & Finance, Elsevier, vol. 38(C), pages 369-376.
    2. Orphanides, Athanasios & Porter, Richard D., 2000. "P revisited: money-based inflation forecasts with a changing equilibrium velocity," Journal of Economics and Business, Elsevier, vol. 52(1-2), pages 87-100.
    3. Roger Farmer, 2012. "The Stock Market Crash of 2008 Caused the Great Recession," 2012 Meeting Papers 145, Society for Economic Dynamics.
    4. Klaus Wohlrabe & Teresa Buchen, 2014. "Assessing the Macroeconomic Forecasting Performance of Boosting: Evidence for the United States, the Euro Area and Germany," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 33(4), pages 231-242, July.
    5. Arturo Estrella & Frederic S. Mishkin, 1998. "Predicting U.S. Recessions: Financial Variables As Leading Indicators," The Review of Economics and Statistics, MIT Press, vol. 80(1), pages 45-61, February.
    6. Anatol Balbach & Denis S. Karnosky, 1975. "Real money balances: a good forecasting device and a good policy target?," Review, Federal Reserve Bank of St. Louis, vol. 57(Sep), pages 11-15.
    7. Proaño, Christian R. & Theobald, Thomas, 2014. "Predicting recessions with a composite real-time dynamic probit model," International Journal of Forecasting, Elsevier, vol. 30(4), pages 898-917.
    8. Artis, Michael J & Kontolemis, Zenon G & Osborn, Denise R, 1997. "Business Cycles for G7 and European Countries," The Journal of Business, University of Chicago Press, vol. 70(2), pages 249-279, April.
    9. Kwiatkowski, Denis & Phillips, Peter C. B. & Schmidt, Peter & Shin, Yongcheol, 1992. "Testing the null hypothesis of stationarity against the alternative of a unit root : How sure are we that economic time series have a unit root?," Journal of Econometrics, Elsevier, vol. 54(1-3), pages 159-178.
    10. Kholodilin Konstantin A., 2005. "Forecasting the German Cyclical Turning Points: Dynamic Bi-Factor Model with Markov Switching," Journal of Economics and Statistics (Jahrbuecher fuer Nationaloekonomie und Statistik), De Gruyter, vol. 225(6), pages 653-674, December.
    11. Ferrara, Laurent & Marcellino, Massimiliano & Mogliani, Matteo, 2015. "Macroeconomic forecasting during the Great Recession: The return of non-linearity?," International Journal of Forecasting, Elsevier, vol. 31(3), pages 664-679.
    12. Serena Ng, 2014. "Viewpoint: Boosting Recessions," Canadian Journal of Economics/Revue canadienne d'économique, John Wiley & Sons, vol. 47(1), pages 1-34, February.
    13. Lessmann, Stefan & Sung, Ming-Chien & Johnson, Johnnie E.V., 2010. "Alternative methods of predicting competitive events: An application in horserace betting markets," International Journal of Forecasting, Elsevier, vol. 26(3), pages 518-536, July.
    14. Ben Taieb, Souhaib & Hyndman, Rob J., 2014. "A gradient boosting approach to the Kaggle load forecasting competition," International Journal of Forecasting, Elsevier, vol. 30(2), pages 382-394.
    15. Manasse, Paolo & Roubini, Nouriel, 2009. ""Rules of thumb" for sovereign debt crises," Journal of International Economics, Elsevier, vol. 78(2), pages 192-205, July.
    16. Buchen, Teresa & Wohlrabe, Klaus, 2011. "Forecasting with many predictors: Is boosting a viable alternative?," Economics Letters, Elsevier, vol. 113(1), pages 16-18, October.
    17. Bec, Frédérique & Bouabdallah, Othman & Ferrara, Laurent, 2014. "The way out of recessions: A forecasting analysis for some Euro area countries," International Journal of Forecasting, Elsevier, vol. 30(3), pages 539-549.
    18. Harding, Don & Pagan, Adrian, 2003. "A comparison of two business cycle dating methods," Journal of Economic Dynamics and Control, Elsevier, vol. 27(9), pages 1681-1690, July.
    19. Farmer, Roger E.A., 2012. "The stock market crash of 2008 caused the Great Recession: Theory and evidence," Journal of Economic Dynamics and Control, Elsevier, vol. 36(5), pages 693-707.
    20. Baker, Stuart G. & Kramer, Barnett S., 2007. "Peirce, Youden, and Receiver Operating Characteristic Curves," The American Statistician, American Statistical Association, vol. 61, pages 343-346, November.
    21. Arturo Estrella & Anthony P. Rodrigues & Sebastian Schich, 2003. "How Stable is the Predictive Power of the Yield Curve? Evidence from Germany and the United States," The Review of Economics and Statistics, MIT Press, vol. 85(3), pages 629-644, August.
    22. Roberto Savona & Marika Vezzoli, 2015. "Fitting and Forecasting Sovereign Defaults using Multiple Risk Signals," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 77(1), pages 66-92, February.
    23. Arthur F. Burns & Wesley C. Mitchell, 1946. "Measuring Business Cycles," NBER Books, National Bureau of Economic Research, Inc, number burn46-1.
    24. Ferrara, Laurent & Marcellino, Massimiliano & Mogliani, Matteo, 2015. "Macroeconomic forecasting during the Great Recession: The return of non-linearity?," International Journal of Forecasting, Elsevier, vol. 31(3), pages 664-679.
    25. Travis J. Berge, 2015. "Predicting Recessions with Leading Indicators: Model Averaging and Selection over the Business Cycle," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 34(6), pages 455-471, September.
    26. Jörg Döpke & Ulrich Fritsche & Boriss Siliverstovs, 2010. "Evaluating German business cycle forecasts under an asymmetric loss function," OECD Journal: Journal of Business Cycle Measurement and Analysis, OECD Publishing, Centre for International Research on Economic Tendency Surveys, vol. 2010(1), pages 1-18.
    27. Lloyd, James Robert, 2014. "GEFCom2012 hierarchical load forecasting: Gradient boosting machines and Gaussian processes," International Journal of Forecasting, Elsevier, vol. 30(2), pages 369-374.
    28. Cáceres, Neila & Malone, Samuel W., 2013. "Forecasting leadership transitions around the world," International Journal of Forecasting, Elsevier, vol. 29(4), pages 575-591.
    29. Kaminsky, Graciela L., 2006. "Currency crises: Are they all the same?," Journal of International Money and Finance, Elsevier, vol. 25(3), pages 503-527, April.
    30. Barro, Robert J. & Ursúa, José F., 2017. "Stock-market crashes and depressions," Research in Economics, Elsevier, vol. 71(3), pages 384-398.
    31. Duarte, Agustin & Venetis, Ioannis A. & Paya, Ivan, 2005. "Predicting real growth and the probability of recession in the Euro area using the yield spread," International Journal of Forecasting, Elsevier, vol. 21(2), pages 261-277.
    32. Drechsel, Katja & Scheufele, Rolf, 2012. "The performance of short-term forecasts of the German economy before and during the 2008/2009 recession," International Journal of Forecasting, Elsevier, vol. 28(2), pages 428-445.
    33. Graham Elliott & Ivana Komunjer & Allan Timmermann, 2008. "Biases in Macroeconomic Forecasts: Irrationality or Asymmetric Loss?," Journal of the European Economic Association, MIT Press, vol. 6(1), pages 122-157, March.
    34. Silva, Lucas, 2014. "A feature engineering approach to wind power forecasting," International Journal of Forecasting, Elsevier, vol. 30(2), pages 395-401.
    35. R. Lehmann & K. Wohlrabe, 2016. "Looking into the black box of boosting: the case of Germany," Applied Economics Letters, Taylor & Francis Journals, vol. 23(17), pages 1229-1233, November.
    36. Heikki Kauppi & Pentti Saikkonen, 2008. "Predicting U.S. Recessions with Dynamic Binary Response Models," The Review of Economics and Statistics, MIT Press, vol. 90(4), pages 777-791, November.
    37. Nikolay Robinzonov & Gerhard Tutz & Torsten Hothorn, 2012. "Boosting techniques for nonlinear time series models," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 96(1), pages 99-122, January.
    38. Henri Nyberg, 2010. "Dynamic probit models and financial variables in recession forecasting," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 29(1-2), pages 215-230.
    39. Travis J. Berge & Òscar Jordà, 2011. "Evaluating the Classification of Economic Activity into Recessions and Expansions," American Economic Journal: Macroeconomics, American Economic Association, vol. 3(2), pages 246-277, April.
    40. Schneider, Matthew J. & Gorr, Wilpen L., 2015. "ROC-based model estimation for forecasting large changes in demand," International Journal of Forecasting, Elsevier, vol. 31(2), pages 253-262.
    41. Mittnik, Stefan & Robinzonov, Nikolay & Spindler, Martin, 2015. "Stock market volatility: Identifying major drivers and the nature of their impact," Journal of Banking & Finance, Elsevier, vol. 58(C), pages 1-14.
    42. Dean Croushore, 2011. "Frontiers of Real-Time Data Analysis," Journal of Economic Literature, American Economic Association, vol. 49(1), pages 72-100, March.
    43. Kim, Hyun Hak & Swanson, Norman R., 2014. "Forecasting financial and macroeconomic variables using data reduction methods: New empirical evidence," Journal of Econometrics, Elsevier, vol. 178(P2), pages 352-367.
    44. Malliaris, A.G. & Malliaris, Mary, 2015. "What drives gold returns? A decision tree analysis," Finance Research Letters, Elsevier, vol. 13(C), pages 45-53.
    45. Estrella, Arturo & Hardouvelis, Gikas A, 1991. "The Term Structure as a Predictor of Real Economic Activity," Journal of Finance, American Finance Association, vol. 46(2), pages 555-576, June.
    46. Liu, Weiling & Moench, Emanuel, 2016. "What predicts US recessions?," International Journal of Forecasting, Elsevier, vol. 32(4), pages 1138-1150.
    47. Brand, Claus & Reimers, Hans-Eggert & Seitz, Franz, 2003. "Forecasting real GDP: what role for narrow money?," Working Paper Series 254, European Central Bank.
    48. Friedman, Jerome H., 2002. "Stochastic gradient boosting," Computational Statistics & Data Analysis, Elsevier, vol. 38(4), pages 367-378, February.
    49. Ivanova, Detelina & Lahiri, Kajal & Seitz, Franz, 2000. "Interest rate spreads as predictors of German inflation and business cycles," International Journal of Forecasting, Elsevier, vol. 16(1), pages 39-58.
    50. Lahiri, Kajal & Wang, J. George, 2013. "Evaluating probability forecasts for GDP declines using alternative methodologies," International Journal of Forecasting, Elsevier, vol. 29(1), pages 175-190.
    51. Rudebusch, Glenn D. & Williams, John C., 2009. "Forecasting Recessions: The Puzzle of the Enduring Power of the Yield Curve," Journal of Business & Economic Statistics, American Statistical Association, vol. 27(4), pages 492-503.
    52. Granger, C W J, 1969. "Investigating Causal Relations by Econometric Models and Cross-Spectral Methods," Econometrica, Econometric Society, vol. 37(3), pages 424-438, July.
    53. Jushan Bai & Serena Ng, 2009. "Boosting diffusion indices," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 24(4), pages 607-629.
    54. Bluedorn, John C. & Decressin, Jörg & Terrones, Marco E., 2016. "Do asset price drops foreshadow recessions?," International Journal of Forecasting, Elsevier, vol. 32(2), pages 518-526.
    55. MacKinnon, James G, 1996. "Numerical Distribution Functions for Unit Root and Cointegration Tests," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 11(6), pages 601-618, Nov.-Dec..
    56. Savona, Roberto, 2014. "Hedge fund systemic risk signals," European Journal of Operational Research, Elsevier, vol. 236(1), pages 282-291.
    57. Gerhard Bry & Charlotte Boschan, 1971. "Programmed Selection of Cyclical Turning Points," NBER Chapters, in: Cyclical Analysis of Time Series: Selected Procedures and Computer Programs, pages 7-63, National Bureau of Economic Research, Inc.
    58. Thomas Theobald, 2012. "Combining Recession Probability Forecasts from a Dynamic Probit Indicator," IMK Working Paper 89-2012, IMK at the Hans Boeckler Foundation, Macroeconomic Policy Institute.
    59. Konstantin A. Kholodilin, 2005. "Forecasting the Turns of German Business Cycle: Dynamic Bi-factor Model with Markov Switching," Discussion Papers of DIW Berlin 494, DIW Berlin, German Institute for Economic Research.
    60. Duttagupta, Rupa & Cashin, Paul, 2011. "Anatomy of banking crises in developing and emerging market countries," Journal of International Money and Finance, Elsevier, vol. 30(2), pages 354-376, March.
    61. Breitung, Jorg & Candelon, Bertrand, 2006. "Testing for short- and long-run causality: A frequency-domain approach," Journal of Econometrics, Elsevier, vol. 132(2), pages 363-378, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jörg Döpke & Ulrich Fritsche & Christian Pierdzioch, 2015. "Predicting Recessions in Germany With Boosted Regression Trees," Macroeconomics and Finance Series 201505, University of Hamburg, Department of Socioeconomics.
    2. Pierdzioch Christian & Gupta Rangan, 2020. "Uncertainty and Forecasts of U.S. Recessions," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 24(4), pages 1-20, September.
    3. Christiansen, Charlotte & Eriksen, Jonas N. & Møller, Stig V., 2019. "Negative house price co-movements and US recessions," Regional Science and Urban Economics, Elsevier, vol. 77(C), pages 382-394.
    4. Hasse, Jean-Baptiste & Lajaunie, Quentin, 2022. "Does the yield curve signal recessions? New evidence from an international panel data analysis," The Quarterly Review of Economics and Finance, Elsevier, vol. 84(C), pages 9-22.
    5. Wolfgang Nierhaus & Timo Wollmershäuser, 2016. "ifo Konjunkturumfragen und Konjunkturanalyse: Band II," ifo Forschungsberichte, ifo Institute - Leibniz Institute for Economic Research at the University of Munich, number 72, October.
    6. Vrontos, Spyridon D. & Galakis, John & Vrontos, Ioannis D., 2021. "Modeling and predicting U.S. recessions using machine learning techniques," International Journal of Forecasting, Elsevier, vol. 37(2), pages 647-671.
    7. Liu, Weiling & Moench, Emanuel, 2016. "What predicts US recessions?," International Journal of Forecasting, Elsevier, vol. 32(4), pages 1138-1150.
    8. Davig, Troy & Hall, Aaron Smalter, 2019. "Recession forecasting using Bayesian classification," International Journal of Forecasting, Elsevier, vol. 35(3), pages 848-867.
    9. Hwang, Youngjin, 2019. "Forecasting recessions with time-varying models," Journal of Macroeconomics, Elsevier, vol. 62(C).
    10. Jean-Baptiste Hasse & Quentin Lajaunie, 2020. "Does the Yield Curve Signal Recessions? New Evidence from an International Panel Data Analysis," AMSE Working Papers 2013, Aix-Marseille School of Economics, France.
    11. Proaño, Christian R. & Theobald, Thomas, 2014. "Predicting recessions with a composite real-time dynamic probit model," International Journal of Forecasting, Elsevier, vol. 30(4), pages 898-917.
    12. Nissilä, Wilma, 2020. "Probit based time series models in recession forecasting – A survey with an empirical illustration for Finland," BoF Economics Review 7/2020, Bank of Finland.
    13. B. De Backer & M. Deroose & Ch. Van Nieuwenhuyze, 2019. "Is a recession imminent? The signal of the yield curve," Economic Review, National Bank of Belgium, issue i, pages 69-93, June.
    14. Lauri Nevasalmi, 2022. "Recession forecasting with high‐dimensional data," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 41(4), pages 752-764, July.
    15. Bluwstein, Kristina & Buckmann, Marcus & Joseph, Andreas & Kapadia, Sujit & Şimşek, Özgür, 2023. "Credit growth, the yield curve and financial crisis prediction: Evidence from a machine learning approach," Journal of International Economics, Elsevier, vol. 145(C).
    16. Vasilios Plakandaras & Juncal Cunado & Rangan Gupta & Mark E. Wohar, 2016. "Do Leading Indicators Forecast U.S. Recessions? A Nonlinear Re-Evaluation Using Historical Data," Working Papers 201685, University of Pretoria, Department of Economics.
    17. Bellégo, C. & Ferrara, L., 2009. "Forecasting Euro-area recessions using time-varying binary response models for financial," Working papers 259, Banque de France.
    18. Carstensen, Kai & Heinrich, Markus & Reif, Magnus & Wolters, Maik H., 2020. "Predicting ordinary and severe recessions with a three-state Markov-switching dynamic factor model," International Journal of Forecasting, Elsevier, vol. 36(3), pages 829-850.
    19. Magnus Reif, 2020. "Macroeconomics, Nonlinearities, and the Business Cycle," ifo Beiträge zur Wirtschaftsforschung, ifo Institute - Leibniz Institute for Economic Research at the University of Munich, number 87.
    20. Antunes, António & Bonfim, Diana & Monteiro, Nuno & Rodrigues, Paulo M.M., 2018. "Forecasting banking crises with dynamic panel probit models," International Journal of Forecasting, Elsevier, vol. 34(2), pages 249-275.

    More about this item

    Keywords

    Recession forecasting; Boosting; Regression trees;
    All these keywords.

    JEL classification:

    • C52 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Evaluation, Validation, and Selection
    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
    • E32 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Business Fluctuations; Cycles
    • E37 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Forecasting and Simulation: Models and Applications

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:intfor:v:33:y:2017:i:4:p:745-759. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/ijforecast .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.