Forecasting crude oil volatility with geopolitical risk: Do time-varying switching probabilities play a role?
Author
Suggested Citation
DOI: 10.1016/j.irfa.2021.101756
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Akram, Q. Farooq, 2020.
"Oil price drivers, geopolitical uncertainty and oil exporters' currencies,"
Energy Economics, Elsevier, vol. 89(C).
- Akram, Q. Farooq, 2019. "Oil price drivers, geopolitical uncertainty and oil exporters’ currencies," Working Paper 2019/15, Norges Bank.
- Dario Caldara & Matteo Iacoviello, 2022.
"Measuring Geopolitical Risk,"
American Economic Review, American Economic Association, vol. 112(4), pages 1194-1225, April.
- Dario Caldara & Matteo Iacoviello, 2018. "Measuring Geopolitical Risk," International Finance Discussion Papers 1222r1, Board of Governors of the Federal Reserve System (U.S.), revised 23 Mar 2022.
- Matteo Iacoviello, 2018. "Measuring Geopolitical Risk," 2018 Meeting Papers 79, Society for Economic Dynamics.
- Bailey, Warren & Chung, Y. Peter, 1995. "Exchange Rate Fluctuations, Political Risk, and Stock Returns: Some Evidence from an Emerging Market," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 30(4), pages 541-561, December.
- Baumeister, Christiane & Guérin, Pierre & Kilian, Lutz, 2015.
"Do high-frequency financial data help forecast oil prices? The MIDAS touch at work,"
International Journal of Forecasting, Elsevier, vol. 31(2), pages 238-252.
- Kilian, Lutz & Baumeister, Christiane, 2013. "Do High-Frequency Financial Data Help Forecast Oil Prices? The MIDAS Touch at Work," CEPR Discussion Papers 9768, C.E.P.R. Discussion Papers.
- Baumeister, Christiane & Guérin, Pierre & Kilian, Lutz, 2013. "Do high-frequency financial data help forecast oil prices? The MIDAS touch at work," CFS Working Paper Series 2013/22, Center for Financial Studies (CFS).
- Christiane Baumeister & Pierre Guérin & Lutz Kilian, 2014. "Do High-Frequency Financial Data Help Forecast Oil Prices? The MIDAS Touch at Work," Staff Working Papers 14-11, Bank of Canada.
- Lamoureux, Christopher G & Lastrapes, William D, 1990. "Heteroskedasticity in Stock Return Data: Volume versus GARCH Effects," Journal of Finance, American Finance Association, vol. 45(1), pages 221-229, March.
- Segal, Gill & Shaliastovich, Ivan & Yaron, Amir, 2015.
"Good and bad uncertainty: Macroeconomic and financial market implications,"
Journal of Financial Economics, Elsevier, vol. 117(2), pages 369-397.
- Gill Segal & Ivan Shaliastovich & Amir Yaron, 2014. "Good and Bad Uncertainty: Macroeconomic and Financial Market Implications," 2014 Meeting Papers 488, Society for Economic Dynamics.
- Filardo, Andrew J. & Gordon, Stephen F., 1998.
"Business cycle durations,"
Journal of Econometrics, Elsevier, vol. 85(1), pages 99-123, July.
- Gordon, S.F. & Filardo, A.J., 1993. "Business Cycle Durations," Papers 9328, Laval - Recherche en Politique Economique.
- Andrew J. Filardo & Stephen F. Gordon, 1993. "Business cycle durations," Research Working Paper 93-11, Federal Reserve Bank of Kansas City.
- Barbara Rossi & Atsushi Inoue, 2012.
"Out-of-Sample Forecast Tests Robust to the Choice of Window Size,"
Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 30(3), pages 432-453, April.
- Rossi, Barbara & Inoue, Atsushi, 2011. "Out-of-Sample Forecast Tests Robust to the Choice of Window Size," CEPR Discussion Papers 8542, C.E.P.R. Discussion Papers.
- Atsushi Inoue & Barbara Rossi, 2011. "Out-of-sample forecast tests robust to the choice of window size," Working Papers 11-31, Federal Reserve Bank of Philadelphia.
- Barbara Rossi & Atsushi Inoue, 2012. "Out-of-sample forecast tests robust to the choice of window size," Economics Working Papers 1404, Department of Economics and Business, Universitat Pompeu Fabra.
- Su, Chi-Wei & Khan, Khalid & Tao, Ran & Nicoleta-Claudia, Moldovan, 2019. "Does geopolitical risk strengthen or depress oil prices and financial liquidity? Evidence from Saudi Arabia," Energy, Elsevier, vol. 187(C).
- Fan, Ying & Xu, Jin-Hua, 2011. "What has driven oil prices since 2000? A structural change perspective," Energy Economics, Elsevier, vol. 33(6), pages 1082-1094.
- Christiane Baumeister & Gert Peersman, 2013.
"Time-Varying Effects of Oil Supply Shocks on the US Economy,"
American Economic Journal: Macroeconomics, American Economic Association, vol. 5(4), pages 1-28, October.
- C. Baumeister & G. Peersman, 2008. "Time-Varying Effects of Oil Supply Shocks on the US Economy," Working Papers of Faculty of Economics and Business Administration, Ghent University, Belgium 08/515, Ghent University, Faculty of Economics and Business Administration.
- Christiane Baumeister & Gert Peersman, 2012. "Time-Varying Effects of Oil Supply Shocks on the U.S. Economy," Staff Working Papers 12-2, Bank of Canada.
- Gert Peersman & Christiane Baumeister, 2009. "Time-Varying Effects of Oil Supply Shocks on the US Economy," 2009 Meeting Papers 171, Society for Economic Dynamics.
- Salisu, Afees A. & Fasanya, Ismail O., 2013. "Modelling oil price volatility with structural breaks," Energy Policy, Elsevier, vol. 52(C), pages 554-562.
- Asai, Manabu & Gupta, Rangan & McAleer, Michael, 2020.
"Forecasting volatility and co-volatility of crude oil and gold futures: Effects of leverage, jumps, spillovers, and geopolitical risks,"
International Journal of Forecasting, Elsevier, vol. 36(3), pages 933-948.
- Manabu Asai & Rangan Gupta & Michael McAleer, 2019. "Forecasting Volatility and Co-volatility of Crude Oil and Gold Futures: Effects of Leverage, Jumps, Spillovers, and Geopolitical Risks," Working Papers 201951, University of Pretoria, Department of Economics.
- Degiannakis, Stavros & Filis, George, 2017.
"Forecasting oil price realized volatility using information channels from other asset classes,"
Journal of International Money and Finance, Elsevier, vol. 76(C), pages 28-49.
- Degiannakis, Stavros & Filis, George, 2017. "Forecasting oil price realized volatility using information channels from other asset classes," MPRA Paper 96276, University Library of Munich, Germany.
- John Y. Campbell & Samuel B. Thompson, 2008.
"Predicting Excess Stock Returns Out of Sample: Can Anything Beat the Historical Average?,"
The Review of Financial Studies, Society for Financial Studies, vol. 21(4), pages 1509-1531, July.
- Campbell, John & Thompson, Samuel P., 2008. "Predicting Excess Stock Returns Out of Sample: Can Anything Beat the Historical Average?," Scholarly Articles 2622619, Harvard University Department of Economics.
- Plakandaras, Vasilios & Gupta, Rangan & Wong, Wing-Keung, 2019.
"Point and density forecasts of oil returns: The role of geopolitical risks,"
Resources Policy, Elsevier, vol. 62(C), pages 580-587.
- Vasilios Plakandaras & Rangan Gupta & Wing-Keung Wong, 2018. "Point and Density Forecasts of Oil Returns: The Role of Geopolitical Risks," Working Papers 201847, University of Pretoria, Department of Economics.
- Hooker, Mark A., 1996. "What happened to the oil price-macroeconomy relationship?," Journal of Monetary Economics, Elsevier, vol. 38(2), pages 195-213, October.
- Arturo Estrella & Frederic S. Mishkin, 1998.
"Predicting U.S. Recessions: Financial Variables As Leading Indicators,"
The Review of Economics and Statistics, MIT Press, vol. 80(1), pages 45-61, February.
- Arturo Estrella & Frederic S. Mishkin, 1995. "Predicting U.S. Recessions: Financial Variables as Leading Indicators," NBER Working Papers 5379, National Bureau of Economic Research, Inc.
- Arturo Estrella & Frederic S. Mishkin, 1996. "Predicting U.S. recessions: financial variables as leading indicators," Research Paper 9609, Federal Reserve Bank of New York.
- Zhang, Yaojie & Ma, Feng & Wang, Yudong, 2019. "Forecasting crude oil prices with a large set of predictors: Can LASSO select powerful predictors?," Journal of Empirical Finance, Elsevier, vol. 54(C), pages 97-117.
- Wei, Yu & Wang, Yudong & Huang, Dengshi, 2010. "Forecasting crude oil market volatility: Further evidence using GARCH-class models," Energy Economics, Elsevier, vol. 32(6), pages 1477-1484, November.
- Hansen, Peter Reinhard, 2005. "A Test for Superior Predictive Ability," Journal of Business & Economic Statistics, American Statistical Association, vol. 23, pages 365-380, October.
- Bouoiyour, Jamal & Selmi, Refk & Hammoudeh, Shawkat & Wohar, Mark E., 2019.
"What are the categories of geopolitical risks that could drive oil prices higher? Acts or threats?,"
Energy Economics, Elsevier, vol. 84(C).
- Jamal Bouoiyour & Refk Selmi & Shawkat Hammoudeh & Mark E Wohar, 2019. "What are the categories of geopolitical risks that could drive oil prices higher? Acts or threats?," Post-Print hal-02409062, HAL.
- Haugom, Erik & Langeland, Henrik & Molnár, Peter & Westgaard, Sjur, 2014. "Forecasting volatility of the U.S. oil market," Journal of Banking & Finance, Elsevier, vol. 47(C), pages 1-14.
- Antonakakis, Nikolaos & Gupta, Rangan & Kollias, Christos & Papadamou, Stephanos, 2017.
"Geopolitical risks and the oil-stock nexus over 1899–2016,"
Finance Research Letters, Elsevier, vol. 23(C), pages 165-173.
- Nikolaos Antonakakis & Rangan Gupta & Christos Kollias & Stephanos Papadamou, 2017. "Geopolitical Risks and the Oil-Stock Nexus Over 1899-2016," Working Papers 201702, University of Pretoria, Department of Economics.
- Christopher J. Neely & David E. Rapach & Jun Tu & Guofu Zhou, 2014.
"Forecasting the Equity Risk Premium: The Role of Technical Indicators,"
Management Science, INFORMS, vol. 60(7), pages 1772-1791, July.
- Christopher J. Neely & David E. Rapach & Jun Tu & Guofu Zhou, 2010. "Out-of-sample equity premium prediction: economic fundamentals vs. moving-average rules," Working Papers 2010-008, Federal Reserve Bank of St. Louis.
- Christopher J. Neely & David E. Rapach & Jun Tu & Guofu Zhou, 2011. "Forecasting the Equity Risk Premium: The Role of Technical Indicators," Working Papers CoFie-02-2011, Singapore Management University, Sim Kee Boon Institute for Financial Economics.
- Zhang, Yue-Jun & Zhang, Lu, 2015. "Interpreting the crude oil price movements: Evidence from the Markov regime switching model," Applied Energy, Elsevier, vol. 143(C), pages 96-109.
- Zhang, Yue-Jun & Yao, Ting & He, Ling-Yun & Ripple, Ronald, 2019. "Volatility forecasting of crude oil market: Can the regime switching GARCH model beat the single-regime GARCH models?," International Review of Economics & Finance, Elsevier, vol. 59(C), pages 302-317.
- Jamel Jouini & Wajih Khallouli, 2019. "Regime switching in the reactions of stock markets in Saudi Arabia to oil price variations," The World Economy, Wiley Blackwell, vol. 42(8), pages 2467-2506, August.
- Xiong, Tao & Bao, Yukun & Hu, Zhongyi, 2013. "Beyond one-step-ahead forecasting: Evaluation of alternative multi-step-ahead forecasting models for crude oil prices," Energy Economics, Elsevier, vol. 40(C), pages 405-415.
- Pesaran, M Hashem & Timmermann, Allan, 1992.
"A Simple Nonparametric Test of Predictive Performance,"
Journal of Business & Economic Statistics, American Statistical Association, vol. 10(4), pages 561-565, October.
- Pesaran, M.H. & Timmermann, A., 1990. "A Simple, Non-Parametric Test Of Predictive Performance," Cambridge Working Papers in Economics 9021, Faculty of Economics, University of Cambridge.
- Pesaran, M.H. & Timmermann, A., 1990. "A Simple Non-Parametric Test Of Predictive Performance," Papers 29, California Los Angeles - Applied Econometrics.
- Mohsin, M. & Zhou, P. & Iqbal, N. & Shah, S.A.A., 2018. "Assessing oil supply security of South Asia," Energy, Elsevier, vol. 155(C), pages 438-447.
- Bollerslev, Tim, 1986.
"Generalized autoregressive conditional heteroskedasticity,"
Journal of Econometrics, Elsevier, vol. 31(3), pages 307-327, April.
- Tim Bollerslev, 1986. "Generalized autoregressive conditional heteroskedasticity," EERI Research Paper Series EERI RP 1986/01, Economics and Econometrics Research Institute (EERI), Brussels.
- Guiso, Luigi & Sapienza, Paola & Zingales, Luigi, 2018.
"Time varying risk aversion,"
Journal of Financial Economics, Elsevier, vol. 128(3), pages 403-421.
- Luigi Guiso & Paola Sapienza & Luigi Zingales, 2013. "Time Varying Risk Aversion," EIEF Working Papers Series 1322, Einaudi Institute for Economics and Finance (EIEF), revised Sep 2013.
- Luigi Guiso & Paola Sapienza & Luigi Zingales, 2013. "Time Varying Risk Aversion," NBER Working Papers 19284, National Bureau of Economic Research, Inc.
- Guiso, Luigi & Zingales, Luigi & Sapienza, Paola, 2013. "Time Varying Risk Aversion," CEPR Discussion Papers 9589, C.E.P.R. Discussion Papers.
- Mei, Dexiang & Ma, Feng & Liao, Yin & Wang, Lu, 2020. "Geopolitical risk uncertainty and oil future volatility: Evidence from MIDAS models," Energy Economics, Elsevier, vol. 86(C).
- Kannadhasan, M. & Das, Debojyoti, 2020. "Do Asian emerging stock markets react to international economic policy uncertainty and geopolitical risk alike? A quantile regression approach," Finance Research Letters, Elsevier, vol. 34(C).
- Walid, Chkili & Chaker, Aloui & Masood, Omar & Fry, John, 2011. "Stock market volatility and exchange rates in emerging countries: A Markov-state switching approach," Emerging Markets Review, Elsevier, vol. 12(3), pages 272-292, September.
- Keddad, Benjamin, 2019.
"How do the Renminbi and other East Asian currencies co-move?,"
Journal of International Money and Finance, Elsevier, vol. 91(C), pages 49-70.
- Keddad, Benjamin, 2016. "How do the Renminbi and other East Asian currencies co-move?," MPRA Paper 83782, University Library of Munich, Germany.
- Diebold, Francis X & Mariano, Roberto S, 2002.
"Comparing Predictive Accuracy,"
Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 134-144, January.
- Diebold, Francis X & Mariano, Roberto S, 1995. "Comparing Predictive Accuracy," Journal of Business & Economic Statistics, American Statistical Association, vol. 13(3), pages 253-263, July.
- Francis X. Diebold & Roberto S. Mariano, 1994. "Comparing Predictive Accuracy," NBER Technical Working Papers 0169, National Bureau of Economic Research, Inc.
- Balcilar, Mehmet & Gupta, Rangan & Miller, Stephen M., 2015.
"Regime switching model of US crude oil and stock market prices: 1859 to 2013,"
Energy Economics, Elsevier, vol. 49(C), pages 317-327.
- Mehmet Balcilar & Rangan Gupta & Stephen M. Miller, 2014. "Regime Switching Model of US Crude Oil and Stock Market Prices: 1859 to 2013," Working papers 2014-26, University of Connecticut, Department of Economics.
- Mehmet Balcilar & Rangan Gupta & Stephen M. Miller, 2014. "Regime Switching Model of US Crude Oil and Stock Market Prices: 1859 to 2013," Working Papers 201429, University of Pretoria, Department of Economics.
- Uddin, Gazi Salah & Rahman, Md Lutfur & Shahzad, Syed Jawad Hussain & Rehman, Mobeen Ur, 2018. "Supply and demand driven oil price changes and their non-linear impact on precious metal returns: A Markov regime switching approach," Energy Economics, Elsevier, vol. 73(C), pages 108-121.
- Chai, Jian & Xing, Li-Min & Zhou, Xiao-Yang & Zhang, Zhe George & Li, Jie-Xun, 2018. "Forecasting the WTI crude oil price by a hybrid-refined method," Energy Economics, Elsevier, vol. 71(C), pages 114-127.
- Basher, Syed Abul & Haug, Alfred A. & Sadorsky, Perry, 2016.
"The impact of oil shocks on exchange rates: A Markov-switching approach,"
Energy Economics, Elsevier, vol. 54(C), pages 11-23.
- Syed Abul, Basher & Alfred A, Haug & Perry, Sadorsky, 2015. "The impact of oil shocks on exchange rates: A Markov-switching approach," MPRA Paper 68232, University Library of Munich, Germany.
- Wen, Fenghua & Gong, Xu & Cai, Shenghua, 2016. "Forecasting the volatility of crude oil futures using HAR-type models with structural breaks," Energy Economics, Elsevier, vol. 59(C), pages 400-413.
- Wang, Yudong & Wu, Chongfeng & Yang, Li, 2016. "Forecasting crude oil market volatility: A Markov switching multifractal volatility approach," International Journal of Forecasting, Elsevier, vol. 32(1), pages 1-9.
- Stavros Degiannakis & Alexandra Livada & Epaminondas Panas, 2008.
"Rolling-sampled parameters of ARCH and Levy-stable models,"
Applied Economics, Taylor & Francis Journals, vol. 40(23), pages 3051-3067.
- Degiannakis, Stavros & Livada, Alexandra & Panas, Epaminondas, 2008. "Rolling-sampled parameters of ARCH and Levy-stable models," MPRA Paper 80464, University Library of Munich, Germany.
- Fong, Wai Mun & See, Kim Hock, 2002. "A Markov switching model of the conditional volatility of crude oil futures prices," Energy Economics, Elsevier, vol. 24(1), pages 71-95, January.
- Apergis, Nicholas & Rezitis, Anthony, 2011.
"Food Price Volatility and Macroeconomic Factors: Evidence from GARCH and GARCH-X Estimates,"
Journal of Agricultural and Applied Economics, Cambridge University Press, vol. 43(1), pages 95-110, February.
- Apergis, Nicholas & Rezitis, Anthony N., 2011. "Food Price Volatility and Macroeconomic Factors: Evidence from GARCH and GARCH-X Estimates," Journal of Agricultural and Applied Economics, Southern Agricultural Economics Association, vol. 43(1), pages 1-16, February.
- Sharif, Arshian & Aloui, Chaker & Yarovaya, Larisa, 2020. "COVID-19 pandemic, oil prices, stock market, geopolitical risk and policy uncertainty nexus in the US economy: Fresh evidence from the wavelet-based approach," International Review of Financial Analysis, Elsevier, vol. 70(C).
- Patton, Andrew J., 2011.
"Volatility forecast comparison using imperfect volatility proxies,"
Journal of Econometrics, Elsevier, vol. 160(1), pages 246-256, January.
- Andrew Patton, 2006. "Volatility Forecast Comparison using Imperfect Volatility Proxies," Research Paper Series 175, Quantitative Finance Research Centre, University of Technology, Sydney.
- Liu, Jing & Ma, Feng & Tang, Yingkai & Zhang, Yaojie, 2019. "Geopolitical risk and oil volatility: A new insight," Energy Economics, Elsevier, vol. 84(C).
- Peter R. Hansen & Asger Lunde & James M. Nason, 2011.
"The Model Confidence Set,"
Econometrica, Econometric Society, vol. 79(2), pages 453-497, March.
- Peter R. Hansen & Asger Lunde & James M. Nason, 2010. "The Model Confidence Set," CREATES Research Papers 2010-76, Department of Economics and Business Economics, Aarhus University.
- Garnaut, Ross & Clunies Ross, Anthony, 1975. "Uncertainty, Risk Aversion and the Taxing of Natural Resource Projects," Economic Journal, Royal Economic Society, vol. 85(338), pages 272-287, June.
- Kang, Sang Hoon & Yoon, Seong-Min, 2013.
"Modeling and forecasting the volatility of petroleum futures prices,"
Energy Economics, Elsevier, vol. 36(C), pages 354-362.
- Seong-Min Yoon & Sang Hoon Kang, 2012. "Modelling and forecasting the volatility of petroleum futures prices," EcoMod2012 3944, EcoMod.
- Filis, George & Degiannakis, Stavros & Floros, Christos, 2011.
"Dynamic correlation between stock market and oil prices: The case of oil-importing and oil-exporting countries,"
International Review of Financial Analysis, Elsevier, vol. 20(3), pages 152-164, June.
- Filis, George & Degiannakis, Stavros & Floros, Christos, 2011. "Dynamic correlation between stock market and oil prices: The case of oil-importing and oil-exporting countries," MPRA Paper 96299, University Library of Munich, Germany.
- Diebold, Francis X & Rudebusch, Glenn D, 1996.
"Measuring Business Cycles: A Modern Perspective,"
The Review of Economics and Statistics, MIT Press, vol. 78(1), pages 67-77, February.
- Diebold & Rudebusch, "undated". "Measuring Business Cycle: A Modern Perspective," Home Pages _061, University of Pennsylvania.
- Francis X. Diebold & Glenn D. Rudebusch, 1994. "Measuring Business Cycles: A Modern Perspective," NBER Working Papers 4643, National Bureau of Economic Research, Inc.
- Ma, Feng & Wahab, M.I.M. & Huang, Dengshi & Xu, Weiju, 2017. "Forecasting the realized volatility of the oil futures market: A regime switching approach," Energy Economics, Elsevier, vol. 67(C), pages 136-145.
- Anders Bredahl Kock & Timo Teräsvirta, 2016.
"Forecasting Macroeconomic Variables Using Neural Network Models and Three Automated Model Selection Techniques,"
Econometric Reviews, Taylor & Francis Journals, vol. 35(8-10), pages 1753-1779, December.
- Anders Bredahl Kock & Timo Teräsvirta, 2011. "Forecasting Macroeconomic Variables using Neural Network Models and Three Automated Model Selection Techniques," CREATES Research Papers 2011-27, Department of Economics and Business Economics, Aarhus University.
- Kinateder, Harald & Papavassiliou, Vassilios G., 2019.
"Sovereign bond return prediction with realized higher moments,"
Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 62(C), pages 53-73.
- Harald Kinateder & Vassilios G. Papavassiliou, 2019. "Sovereign bond return prediction with realized higher moments," Open Access publications 10197/11286, Research Repository, University College Dublin.
- Di Sanzo, Silvestro, 2018. "A Markov switching long memory model of crude oil price return volatility," Energy Economics, Elsevier, vol. 74(C), pages 351-359.
- Hooker, Mark A., 1996. "This is what happened to the oil price-macroeconomy relationship: Reply," Journal of Monetary Economics, Elsevier, vol. 38(2), pages 221-222, October.
- McCracken, Michael W., 2007. "Asymptotics for out of sample tests of Granger causality," Journal of Econometrics, Elsevier, vol. 140(2), pages 719-752, October.
- Han, Liyan & Lv, Qiuna & Yin, Libo, 2017. "Can investor attention predict oil prices?," Energy Economics, Elsevier, vol. 66(C), pages 547-558.
- Clark, Todd E. & West, Kenneth D., 2007.
"Approximately normal tests for equal predictive accuracy in nested models,"
Journal of Econometrics, Elsevier, vol. 138(1), pages 291-311, May.
- Todd E. Clark & Kenneth D. West, 2005. "Approximately normal tests for equal predictive accuracy in nested models," Research Working Paper RWP 05-05, Federal Reserve Bank of Kansas City.
- Kenneth D. West & Todd Clark, 2006. "Approximately Normal Tests for Equal Predictive Accuracy in Nested Models," NBER Technical Working Papers 0326, National Bureau of Economic Research, Inc.
- Uddin, Gazi Salah & Bekiros, Stelios & Ahmed, Ali, 2018. "The nexus between geopolitical uncertainty and crude oil markets: An entropy-based wavelet analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 495(C), pages 30-39.
- Kang, Wensheng & Ratti, Ronald A., 2013.
"Oil shocks, policy uncertainty and stock market return,"
Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 26(C), pages 305-318.
- Kang, Wensheng & Ratti, Ronald A., 2013. "Oil shocks, policy uncertainty and stock market return," MPRA Paper 49008, University Library of Munich, Germany.
- Herrera, Ana María & Hu, Liang & Pastor, Daniel, 2018. "Forecasting crude oil price volatility," International Journal of Forecasting, Elsevier, vol. 34(4), pages 622-635.
- Hamilton, James D. & Susmel, Raul, 1994.
"Autoregressive conditional heteroskedasticity and changes in regime,"
Journal of Econometrics, Elsevier, vol. 64(1-2), pages 307-333.
- Tom Doan, "undated". "RATS programs to estimate Hamilton-Susmel Markov Switching ARCH model," Statistical Software Components RTZ00083, Boston College Department of Economics.
- Li Liu & Yudong Wang, 2021. "Forecasting aggregate market volatility: The role of good and bad uncertainties," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 40(1), pages 40-61, January.
- Feng Ma & Chao Liang & Yuanhui Ma & M.I.M. Wahab, 2020. "Cryptocurrency volatility forecasting: A Markov regime‐switching MIDAS approach," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 39(8), pages 1277-1290, December.
- Alfred Haug & Syed Basher & Perry Sadorsky, 2016.
"The impact of oil price shocks on exchange rates: A non-linear smooth-transition approach,"
EcoMod2016
9226, EcoMod.
- Haug, Alfred A. & Basher, Syed Abul, 2017. "Exchange rates of oil exporting countries and global oil price shocks: A nonlinear smooth-transition approach," MPRA Paper 83205, University Library of Munich, Germany.
- Huang, Bwo-Nung & Hwang, M.J. & Peng, Hsiao-Ping, 2005. "The asymmetry of the impact of oil price shocks on economic activities: An application of the multivariate threshold model," Energy Economics, Elsevier, vol. 27(3), pages 455-476, May.
- Angelidis, Timotheos & Benos, Alexandros & Degiannakis, Stavros, 2004.
"The Use of GARCH Models in VaR Estimation,"
MPRA Paper
96332, University Library of Munich, Germany.
- Timotheos Angelidis & Alexandros Benos & Stavros Degiannakis, 2010. "The Use of GARCH Models in VaR Estimation," Working Papers 0048, University of Peloponnese, Department of Economics.
- Gong, Xu & Lin, Boqiang, 2018. "Time-varying effects of oil supply and demand shocks on China's macro-economy," Energy, Elsevier, vol. 149(C), pages 424-437.
- Weidlich, Wolfgang & Braun, Martin, 1992. "The Master Equation Approach to Nonlinear Economics," Journal of Evolutionary Economics, Springer, vol. 2(3), pages 233-265, October.
- Wang, Kai-Hua & Su, Chi-Wei & Umar, Muhammad, 2021. "Geopolitical risk and crude oil security: A Chinese perspective," Energy, Elsevier, vol. 219(C).
- Chao Liang & Yu Wei & Yaojie Zhang, 2020. "Is implied volatility more informative for forecasting realized volatility: An international perspective," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 39(8), pages 1253-1276, December.
- Dimitrios Asteriou & Costas Siriopoulos, 2000. "The Role of Political Instability in Stock Market Development and Economic Growth: The Case of Greece," Economic Notes, Banca Monte dei Paschi di Siena SpA, vol. 29(3), pages 355-374, November.
- Jonathan Brogaard & Lili Dai & Phong T H Ngo & Bohui Zhang, 2020. "Global Political Uncertainty and Asset Prices," The Review of Financial Studies, Society for Financial Studies, vol. 33(4), pages 1737-1780.
- Hamilton, James D, 1989. "A New Approach to the Economic Analysis of Nonstationary Time Series and the Business Cycle," Econometrica, Econometric Society, vol. 57(2), pages 357-384, March.
- Sadorsky, Perry, 1999. "Oil price shocks and stock market activity," Energy Economics, Elsevier, vol. 21(5), pages 449-469, October.
- Wang, Lu & Ma, Feng & Liu, Jing & Yang, Lin, 2020. "Forecasting stock price volatility: New evidence from the GARCH-MIDAS model," International Journal of Forecasting, Elsevier, vol. 36(2), pages 684-694.
- Marco Bazzi & Francisco Blasques & Siem Jan Koopman & Andre Lucas, 2017.
"Time-Varying Transition Probabilities for Markov Regime Switching Models,"
Journal of Time Series Analysis, Wiley Blackwell, vol. 38(3), pages 458-478, May.
- Marco Bazzi & Francisco Blasques & Siem Jan Koopman & Andre Lucas, 2014. "Time Varying Transition Probabilities for Markov Regime Switching Models," Tinbergen Institute Discussion Papers 14-072/III, Tinbergen Institute.
- Rahman, Sajjadur & Serletis, Apostolos, 2011. "The Asymmetric Effects Of Oil Price Shocks," Macroeconomic Dynamics, Cambridge University Press, vol. 15(S3), pages 437-471, November.
- Jonathan Brogaard & Lili Dai & Phong T H Ngo & Bohui Zhang, 2020. "Global Political Uncertainty and Asset Prices," Review of Finance, European Finance Association, vol. 33(4), pages 1737-1780.
- Filardo, Andrew J, 1994.
"Business-Cycle Phases and Their Transitional Dynamics,"
Journal of Business & Economic Statistics, American Statistical Association, vol. 12(3), pages 299-308, July.
- Andrew J. Filardo, 1993. "Business cycle phases and their transitional dynamics," Research Working Paper 93-14, Federal Reserve Bank of Kansas City.
- Chang, Kuang-Liang, 2012. "Volatility regimes, asymmetric basis effects and forecasting performance: An empirical investigation of the WTI crude oil futures market," Energy Economics, Elsevier, vol. 34(1), pages 294-306.
- Xunxiao Wang & Keshab Shrestha & Qi Sun, 2019. "Forecasting realised volatility: a Markov switching approach with time‐varying transition probabilities," Accounting and Finance, Accounting and Finance Association of Australia and New Zealand, vol. 59(S2), pages 1947-1975, November.
- Guglielmo Maria Caporale & Nikitas Pittis & Nicola Spagnolo, 2003. "IGARCH models and structural breaks," Applied Economics Letters, Taylor & Francis Journals, vol. 10(12), pages 765-768.
- Ma, Feng & Liao, Yin & Zhang, Yaojie & Cao, Yang, 2019. "Harnessing jump component for crude oil volatility forecasting in the presence of extreme shocks," Journal of Empirical Finance, Elsevier, vol. 52(C), pages 40-55.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Ding, Shusheng & Cui, Tianxiang & Zhang, Yongmin, 2022. "Futures volatility forecasting based on big data analytics with incorporating an order imbalance effect," International Review of Financial Analysis, Elsevier, vol. 83(C).
- Ivanovski, Kris & Hailemariam, Abebe, 2022. "Time-varying geopolitical risk and oil prices," International Review of Economics & Finance, Elsevier, vol. 77(C), pages 206-221.
- Zhang, Zhikai & Wang, Yudong & Xiao, Jihong & Zhang, Yaojie, 2023. "Not all geopolitical shocks are alike: Identifying price dynamics in the crude oil market under tensions," Resources Policy, Elsevier, vol. 80(C).
- Gkillas, Konstantinos & Manickavasagam, Jeevananthan & Visalakshmi, S., 2022. "Effects of fundamentals, geopolitical risk and expectations factors on crude oil prices," Resources Policy, Elsevier, vol. 78(C).
- Nonejad, Nima, 2022. "Forecasting crude oil price volatility out-of-sample using news-based geopolitical risk index: What forms of nonlinearity help improve forecast accuracy the most?," Finance Research Letters, Elsevier, vol. 46(PA).
- Xia, Mingli & Zhu, Guangfeng, 2024. "The importance of intellectual property: Analyzing the impact of resource efficiency improvements in the mineral sector," Resources Policy, Elsevier, vol. 91(C).
- Hong, Yanran & Wang, Lu & Liang, Chao & Umar, Muhammad, 2022. "Impact of financial instability on international crude oil volatility: New sight from a regime-switching framework," Resources Policy, Elsevier, vol. 77(C).
- Xu, Kunliang & Wang, Weiqing, 2023. "Limited information limits accuracy: Whether ensemble empirical mode decomposition improves crude oil spot price prediction?," International Review of Financial Analysis, Elsevier, vol. 87(C).
- Li, Xin & Umar, Muhammad & Zhu, Cun-Bin & Oprean-Stan, Camelia, 2023. "Can geopolitical risk stably predict crude oil prices? A multi-dimensional perspective," Resources Policy, Elsevier, vol. 85(PA).
- Khan, Nasir & Saleem, Asima & Ozkan, Oktay, 2023. "Do geopolitical oil price risk influence stock market returns and volatility of Pakistan: Evidence from novel non-parametric quantile causality approach," Resources Policy, Elsevier, vol. 81(C).
- Nonejad, Nima, 2022. "An interesting finding about the ability of geopolitical risk to forecast aggregate equity return volatility out-of-sample," Finance Research Letters, Elsevier, vol. 47(PB).
- Liang, Xuedong & Luo, Peng & Li, Xiaoyan & Wang, Xia & Shu, Lingli, 2023. "Crude oil price prediction using deep reinforcement learning," Resources Policy, Elsevier, vol. 81(C).
- Liang, Chao & Wang, Lu & Duong, Duy, 2024. "More attention and better volatility forecast accuracy: How does war attention affect stock volatility predictability?," Journal of Economic Behavior & Organization, Elsevier, vol. 218(C), pages 1-19.
- Yang, Chuxiao & Wu, Haitao & Guo, Yunxia & Hao, Yu, 2024. "Possible carbon circular pathway exploration for oil transition under the consideration of energy supply constraint and uncertainty," Ecological Economics, Elsevier, vol. 222(C).
- Chen, Zhuoyi & Liu, Yuanyuan & Zhang, Hongwei, 2024. "Can geopolitical risks impact the long-run correlation between crude oil and clean energy markets? Evidence from a regime-switching analysis," Renewable Energy, Elsevier, vol. 229(C).
- Lu, Fei & Ma, Feng & Guo, Qiang, 2023. "Less is more? New evidence from stock market volatility predictability," International Review of Financial Analysis, Elsevier, vol. 89(C).
- Salisu, Afees A. & Ogbonna, Ahamuefula E. & Lasisi, Lukman & Olaniran, Abeeb, 2022. "Geopolitical risk and stock market volatility in emerging markets: A GARCH – MIDAS approach," The North American Journal of Economics and Finance, Elsevier, vol. 62(C).
- Wang, Lu & Wu, Jiangbin & Cao, Yang & Hong, Yanran, 2022. "Forecasting renewable energy stock volatility using short and long-term Markov switching GARCH-MIDAS models: Either, neither or both?," Energy Economics, Elsevier, vol. 111(C).
- Yan Ding & Yue Liu & Pierre Failler, 2022. "The Impact of Uncertainties on Crude Oil Prices: Based on a Quantile-on-Quantile Method," Energies, MDPI, vol. 15(10), pages 1-35, May.
- Li, Xiafei & Liang, Chao & Chen, Zhonglu & Umar, Muhammad, 2022. "Forecasting crude oil volatility with uncertainty indicators: New evidence," Energy Economics, Elsevier, vol. 108(C).
- Wang, Jiqian & He, Xiaofeng & Ma, Feng & Li, Pan, 2022. "Uncertainty and oil volatility: Evidence from shrinkage method," Resources Policy, Elsevier, vol. 75(C).
- Wang, Lu & Wu, Rui & Ma, WeiChun & Xu, Weiju, 2023. "Examining the volatility of soybean market in the MIDAS framework: The importance of bagging-based weather information," International Review of Financial Analysis, Elsevier, vol. 89(C).
- Fang, Yi & Shao, Zhiquan, 2022. "The Russia-Ukraine conflict and volatility risk of commodity markets," Finance Research Letters, Elsevier, vol. 50(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Luo, Jiawen & Ji, Qiang & Klein, Tony & Todorova, Neda & Zhang, Dayong, 2020. "On realized volatility of crude oil futures markets: Forecasting with exogenous predictors under structural breaks," Energy Economics, Elsevier, vol. 89(C).
- Hong, Yanran & Wang, Lu & Liang, Chao & Umar, Muhammad, 2022. "Impact of financial instability on international crude oil volatility: New sight from a regime-switching framework," Resources Policy, Elsevier, vol. 77(C).
- Danyan Wen & Mengxi He & Yaojie Zhang & Yudong Wang, 2022. "Forecasting realized volatility of Chinese stock market: A simple but efficient truncated approach," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 41(2), pages 230-251, March.
- Wang, Lu & Wu, Jiangbin & Cao, Yang & Hong, Yanran, 2022. "Forecasting renewable energy stock volatility using short and long-term Markov switching GARCH-MIDAS models: Either, neither or both?," Energy Economics, Elsevier, vol. 111(C).
- Guo, Yangli & Li, Pan & Wu, Hanlin, 2023. "Jumps in the Chinese crude oil futures volatility forecasting: New evidence," Energy Economics, Elsevier, vol. 126(C).
- Xinjie Lu & Feng Ma & Jiqian Wang & Jing Liu, 2022. "Forecasting oil futures realized range‐based volatility with jumps, leverage effect, and regime switching: New evidence from MIDAS models," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 41(4), pages 853-868, July.
- Chao Liang & Yaojie Zhang & Xiafei Li & Feng Ma, 2022. "Which predictor is more predictive for Bitcoin volatility? And why?," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 27(2), pages 1947-1961, April.
- Degiannakis, Stavros & Filis, George, 2017.
"Forecasting oil price realized volatility using information channels from other asset classes,"
Journal of International Money and Finance, Elsevier, vol. 76(C), pages 28-49.
- Degiannakis, Stavros & Filis, George, 2017. "Forecasting oil price realized volatility using information channels from other asset classes," MPRA Paper 96276, University Library of Munich, Germany.
- Lu Wang & Feng Ma & Guoshan Liu & Qiaoqi Lang, 2023. "Do extreme shocks help forecast oil price volatility? The augmented GARCH‐MIDAS approach," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 28(2), pages 2056-2073, April.
- Xiafei Li & Yu Wei & Xiaodan Chen & Feng Ma & Chao Liang & Wang Chen, 2022. "Which uncertainty is powerful to forecast crude oil market volatility? New evidence," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 27(4), pages 4279-4297, October.
- Zhang, Yaojie & Lei, Likun & Wei, Yu, 2020. "Forecasting the Chinese stock market volatility with international market volatilities: The role of regime switching," The North American Journal of Economics and Finance, Elsevier, vol. 52(C).
- Zhang, Yaojie & Ma, Feng & Wei, Yu, 2019. "Out-of-sample prediction of the oil futures market volatility: A comparison of new and traditional combination approaches," Energy Economics, Elsevier, vol. 81(C), pages 1109-1120.
- Li, Sufang & Tu, Dalun & Zeng, Yan & Gong, Chenggang & Yuan, Di, 2022. "Does geopolitical risk matter in crude oil and stock markets? Evidence from disaggregated data," Energy Economics, Elsevier, vol. 113(C).
- Zhang, Zhikai & He, Mengxi & Zhang, Yaojie & Wang, Yudong, 2022. "Geopolitical risk trends and crude oil price predictability," Energy, Elsevier, vol. 258(C).
- Lu, Botao & Ma, Feng & Wang, Jiqian & Ding, Hui & Wahab, M.I.M., 2021. "Harnessing the decomposed realized measures for volatility forecasting: Evidence from the US stock market," International Review of Economics & Finance, Elsevier, vol. 72(C), pages 672-689.
- Urom, Christian & Onwuka, Kevin O. & Uma, Kalu E. & Yuni, Denis N., 2020. "Regime dependent effects and cyclical volatility spillover between crude oil price movements and stock returns," International Economics, Elsevier, vol. 161(C), pages 10-29.
- Xiao, Jihong & Wen, Fenghua & He, Zhifang, 2023. "Impact of geopolitical risks on investor attention and speculation in the oil market: Evidence from nonlinear and time-varying analysis," Energy, Elsevier, vol. 267(C).
- Liu, Yuanyuan & Niu, Zibo & Suleman, Muhammad Tahir & Yin, Libo & Zhang, Hongwei, 2022. "Forecasting the volatility of crude oil futures: The role of oil investor attention and its regime switching characteristics under a high-frequency framework," Energy, Elsevier, vol. 238(PA).
- Lang, Korbinian & Auer, Benjamin R., 2020. "The economic and financial properties of crude oil: A review," The North American Journal of Economics and Finance, Elsevier, vol. 52(C).
- Zhang, Yue-Jun & Yao, Ting & He, Ling-Yun & Ripple, Ronald, 2019. "Volatility forecasting of crude oil market: Can the regime switching GARCH model beat the single-regime GARCH models?," International Review of Economics & Finance, Elsevier, vol. 59(C), pages 302-317.
More about this item
Keywords
Crude oil market volatility; Geopolitical risk; Volatility forecasting; Markov-regime switching; Time-varying transition probabilities;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:finana:v:76:y:2021:i:c:s1057521921000983. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/620166 .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.