Nothing Special   »   [go: up one dir, main page]

IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v284y2020i3p1074-1087.html
   My bibliography  Save this article

Allocating costs in set covering problems

Author

Listed:
  • Bergantiños, Gustavo
  • Gómez-Rúa, María
  • Llorca, Natividad
  • Pulido, Manuel
  • Sánchez-Soriano, Joaquín
Abstract
This paper deals with the problem of allocating costs in set covering situations. In particular, we focus on set covering situations where the optimal covering is given in advance. Thus, we take into account only the facilities that have to be opened and look for rules distributing their cost. We define a cooperative game and study the core and the nucleolus. We also introduce two new rules: the equal split rule on facilities and the serial rule. We axiomatically characterize the core, the nucleolus, and the two rules. Finally, we study several monotonicity properties of the rules.

Suggested Citation

  • Bergantiños, Gustavo & Gómez-Rúa, María & Llorca, Natividad & Pulido, Manuel & Sánchez-Soriano, Joaquín, 2020. "Allocating costs in set covering problems," European Journal of Operational Research, Elsevier, vol. 284(3), pages 1074-1087.
  • Handle: RePEc:eee:ejores:v:284:y:2020:i:3:p:1074-1087
    DOI: 10.1016/j.ejor.2020.01.031
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221720300527
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2020.01.031?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Moulin, Herve & Shenker, Scott, 1992. "Serial Cost Sharing," Econometrica, Econometric Society, vol. 60(5), pages 1009-1037, September.
    2. Bergantinos, Gustavo & Vidal-Puga, Juan J., 2007. "A fair rule in minimum cost spanning tree problems," Journal of Economic Theory, Elsevier, vol. 137(1), pages 326-352, November.
    3. Gustavo Bergantiños & Silvia Lorenzo-Freire, 2008. "A characterization of optimistic weighted Shapley rules in minimum cost spanning tree problems," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 35(3), pages 523-538, June.
    4. Michel Grabisch & Christophe Labreuche, 2010. "A decade of application of the Choquet and Sugeno integrals in multi-criteria decision aid," Annals of Operations Research, Springer, vol. 175(1), pages 247-286, March.
    5. M. Fiestras-Janeiro & Ignacio García-Jurado & Manuel Mosquera, 2011. "Rejoinder on: Cooperative games and cost allocation problems," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 19(1), pages 33-34, July.
    6. Ehud Kalai & Eitan Zemel, 1982. "Totally Balanced Games and Games of Flow," Mathematics of Operations Research, INFORMS, vol. 7(3), pages 476-478, August.
    7. Sanchez-Soriano, Joaquin, 2006. "Pairwise solutions and the core of transportation situations," European Journal of Operational Research, Elsevier, vol. 175(1), pages 101-110, November.
    8. Daniel Granot, 1987. "The Role of Cost Allocation in Locational Models," Operations Research, INFORMS, vol. 35(2), pages 234-248, April.
    9. Peter Borm & Herbert Hamers & Ruud Hendrickx, 2001. "Operations research games: A survey," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 9(2), pages 139-199, December.
    10. Constantine Toregas & Ralph Swain & Charles ReVelle & Lawrence Bergman, 1971. "The Location of Emergency Service Facilities," Operations Research, INFORMS, vol. 19(6), pages 1363-1373, October.
    11. SCHMEIDLER, David, 1969. "The nucleolus of a characteristic function game," LIDAM Reprints CORE 44, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    12. Ehud Kalai & Eitan Zemel, 1982. "Generalized Network Problems Yielding Totally Balanced Games," Operations Research, INFORMS, vol. 30(5), pages 998-1008, October.
    13. Sanchez-Soriano, Joaquin, 2003. "The pairwise egalitarian solution," European Journal of Operational Research, Elsevier, vol. 150(1), pages 220-231, October.
    14. Justo Puerto & Ignacio Garcı´a-Jurado & Francisco R. Fernández, 2001. "On the core of a class of location games," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 54(3), pages 373-385, December.
    15. Jackson, Matthew O. & Zenou, Yves, 2015. "Games on Networks," Handbook of Game Theory with Economic Applications,, Elsevier.
    16. Vito Fragnelli & Stefano Gagliardo, 2013. "Open Problems In Cooperative Location Games," International Game Theory Review (IGTR), World Scientific Publishing Co. Pte. Ltd., vol. 15(03), pages 1-13.
    17. Bergantinos, Gustavo & Lorenzo-Freire, Silvia, 2008. ""Optimistic" weighted Shapley rules in minimum cost spanning tree problems," European Journal of Operational Research, Elsevier, vol. 185(1), pages 289-298, February.
    18. M. Fiestras-Janeiro & Ignacio García-Jurado & Manuel Mosquera, 2011. "Cooperative games and cost allocation problems," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 19(1), pages 1-22, July.
    19. Xiang-Yang Li & Zheng Sun & Weizhao Wang & Wei Lou, 2010. "Cost sharing and strategyproof mechanisms for set cover games," Journal of Combinatorial Optimization, Springer, vol. 20(3), pages 259-284, October.
    20. Bergantiños, G. & Gómez-Rúa, M. & Llorca, N. & Pulido, M. & Sánchez-Soriano, J., 2014. "A new rule for source connection problems," European Journal of Operational Research, Elsevier, vol. 234(3), pages 780-788.
    21. Xiaotie Deng & Toshihide Ibaraki & Hiroshi Nagamochi, 1999. "Algorithmic Aspects of the Core of Combinatorial Optimization Games," Mathematics of Operations Research, INFORMS, vol. 24(3), pages 751-766, August.
    22. Beasley, J. E. & Jornsten, K., 1992. "Enhancing an algorithm for set covering problems," European Journal of Operational Research, Elsevier, vol. 58(2), pages 293-300, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bergantiños, Gustavo & Moreno-Ternero, Juan D., 2022. "Monotonicity in sharing the revenues from broadcasting sports leagues," European Journal of Operational Research, Elsevier, vol. 297(1), pages 338-346.
    2. Acosta-Vega, Rick K. & Algaba, Encarnación & Sánchez-Soriano, Joaquín, 2023. "Design of water quality policies based on proportionality in multi-issue problems with crossed claims," European Journal of Operational Research, Elsevier, vol. 311(2), pages 777-788.
    3. Rick K. Acosta & Encarnación Algaba & Joaquín Sánchez-Soriano, 2022. "Multi-issue bankruptcy problems with crossed claims," Annals of Operations Research, Springer, vol. 318(2), pages 749-772, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bergantiños, Gustavo & Vidal-Puga, Juan, 2020. "Cooperative games for minimum cost spanning tree problems," MPRA Paper 104911, University Library of Munich, Germany.
    2. Algaba, Encarnación & Béal, Sylvain & Fragnelli, Vito & Llorca, Natividad & Sánchez-Soriano, Joaquin, 2019. "Relationship between labeled network games and other cooperative games arising from attributes situations," Economics Letters, Elsevier, vol. 185(C).
    3. Drechsel, J. & Kimms, A., 2010. "Computing core allocations in cooperative games with an application to cooperative procurement," International Journal of Production Economics, Elsevier, vol. 128(1), pages 310-321, November.
    4. Christian Trudeau, 2023. "Minimum cost spanning tree problems as value sharing problems," International Journal of Game Theory, Springer;Game Theory Society, vol. 52(1), pages 253-272, March.
    5. Bergantiños, Gustavo & Martínez, Ricardo, 2014. "Cost allocation in asymmetric trees," European Journal of Operational Research, Elsevier, vol. 237(3), pages 975-987.
    6. Perea, F. & Puerto, J. & Fernández, F.R., 2009. "Modeling cooperation on a class of distribution problems," European Journal of Operational Research, Elsevier, vol. 198(3), pages 726-733, November.
    7. Bergantiños, Gustavo & Lorenzo, Leticia & Lorenzo-Freire, Silvia, 2011. "A generalization of obligation rules for minimum cost spanning tree problems," European Journal of Operational Research, Elsevier, vol. 211(1), pages 122-129, May.
    8. Csóka, Péter & Illés, Ferenc & Solymosi, Tamás, 2022. "On the Shapley value of liability games," European Journal of Operational Research, Elsevier, vol. 300(1), pages 378-386.
    9. Borrero, D.V. & Hinojosa, M.A. & Mármol, A.M., 2016. "DEA production games and Owen allocations," European Journal of Operational Research, Elsevier, vol. 252(3), pages 921-930.
    10. Gustavo Bergantiños & María Gómez-Rúa, 2015. "An axiomatic approach in minimum cost spanning tree problems with groups," Annals of Operations Research, Springer, vol. 225(1), pages 45-63, February.
    11. Trudeau, Christian & Vidal-Puga, Juan, 2020. "Clique games: A family of games with coincidence between the nucleolus and the Shapley value," Mathematical Social Sciences, Elsevier, vol. 103(C), pages 8-14.
    12. Munich, Léa, 2024. "Schedule situations and their cooperative game theoretic representations," European Journal of Operational Research, Elsevier, vol. 316(2), pages 767-778.
    13. Gustavo Bergantiños & Juan Vidal-Puga, 2021. "A review of cooperative rules and their associated algorithms for minimum-cost spanning tree problems," SERIEs: Journal of the Spanish Economic Association, Springer;Spanish Economic Association, vol. 12(1), pages 73-100, March.
    14. R. Pablo Arribillaga & G. Bergantiños, 2022. "Cooperative and axiomatic approaches to the knapsack allocation problem," Annals of Operations Research, Springer, vol. 318(2), pages 805-830, November.
    15. Nils Bertschinger & Martin Hoefer & Daniel Schmand, 2019. "Flow Allocation Games," Papers 1908.01714, arXiv.org, revised Dec 2023.
    16. Lotty E. Westerink‐Duijzer & Loe P. J. Schlicher & Marieke Musegaas, 2020. "Core Allocations for Cooperation Problems in Vaccination," Production and Operations Management, Production and Operations Management Society, vol. 29(7), pages 1720-1737, July.
    17. Gustavo Bergantiños & Youngsub Chun & Eunju Lee & Leticia Lorenzo, 2022. "The Folk Rule for Minimum Cost Spanning Tree Problems with Multiple Sources," International Game Theory Review (IGTR), World Scientific Publishing Co. Pte. Ltd., vol. 24(01), pages 1-36, March.
    18. Léa Munich, 2023. "Schedule Situations and their Cooperative Game Theoretic Representations," Working Papers 2023-08, CRESE.
    19. Algaba, Encarnación & Fragnelli, Vito & Llorca, Natividad & Sánchez-Soriano, Joaquin, 2019. "Horizontal cooperation in a multimodal public transport system: The profit allocation problem," European Journal of Operational Research, Elsevier, vol. 275(2), pages 659-665.
    20. O. Palancı & S. Z. Alparslan Gök & M. O. Olgun & G.-W. Weber, 2016. "Transportation interval situations and related games," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 38(1), pages 119-136, January.

    More about this item

    Keywords

    Set covering problems; Cost sharing rules; Cooperative games;
    All these keywords.

    JEL classification:

    • C71 - Mathematical and Quantitative Methods - - Game Theory and Bargaining Theory - - - Cooperative Games

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:284:y:2020:i:3:p:1074-1087. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.