Nothing Special   »   [go: up one dir, main page]

IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v282y2023ics0360544223023538.html
   My bibliography  Save this article

Modeling of multiple thermal fluid circulation in horizontal section of wellbores

Author

Listed:
  • Wang, Huaijing
Abstract
The development of heavy oil reservoirs has broad prospects. Because heavy oil reservoirs have the characteristics of high viscosity and poor fluidity, they often need to be heated. For heavy oil reservoirs, the effect of simple steam injection development is limited. By mixing superheated steam or steam with non-condensable gas, the development effect of heavy oil can be improved. Due to the high viscosity of heavy oil reservoirs, the initial injection capacity of the heat carrier is poor, and cyclic preheating is often required. In this paper, through theoretical research, the process of multi-element thermal fluid injection in heavy oil reservoirs is studied. The circulation preheating characteristics of the multi-element thermal fluid inside the wellbore are analyzed. Results show that for different ratios of nitrogen to carbon dioxide: when the multi-element thermal fluid flows from the finger end (1000 m) to the heel end (0 m) of the annular space, the oil layer heat absorption rate first drops and then rises.

Suggested Citation

  • Wang, Huaijing, 2023. "Modeling of multiple thermal fluid circulation in horizontal section of wellbores," Energy, Elsevier, vol. 282(C).
  • Handle: RePEc:eee:energy:v:282:y:2023:i:c:s0360544223023538
    DOI: 10.1016/j.energy.2023.128959
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544223023538
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2023.128959?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Xie, Kun & Nian, Yong-Le & Cheng, Wen-Long, 2018. "Analysis and optimization of underground thermal energy storage using depleted oil wells," Energy, Elsevier, vol. 163(C), pages 1006-1016.
    2. Li, Guoliang & Li, Guanfang & Luo, Chao & Zhou, Runqing & Zhou, Jian & Yang, Jijin, 2023. "Dynamic evolution of shale permeability under coupled temperature and effective stress conditions," Energy, Elsevier, vol. 266(C).
    3. Sun, Fengrui & Yao, Yuedong & Chen, Mingqiang & Li, Xiangfang & Zhao, Lin & Meng, Ye & Sun, Zheng & Zhang, Tao & Feng, Dong, 2017. "Performance analysis of superheated steam injection for heavy oil recovery and modeling of wellbore heat efficiency," Energy, Elsevier, vol. 125(C), pages 795-804.
    4. Sun, Fengrui & Liu, Dameng & Cai, Yidong & Qiu, Yongkai, 2023. "Coal rank-pressure coupling control mechanism on gas adsorption/desorption in coalbed methane reservoirs," Energy, Elsevier, vol. 270(C).
    5. Sun, Fengrui & Liu, Dameng & Cai, Yidong & Qiu, Yongkai, 2023. "Surface jump mechanism of gas molecules in strong adsorption field of coalbed methane reservoirs," Applied Energy, Elsevier, vol. 349(C).
    6. Zhang, Zheng & Xiong, Youming & Gao, Yun & Liu, Liming & Wang, Menghao & Peng, Geng, 2018. "Wellbore temperature distribution during circulation stage when well-kick occurs in a continuous formation from the bottom-hole," Energy, Elsevier, vol. 164(C), pages 964-977.
    7. Sun, Fengrui & Liu, Dameng & Cai, Yidong & Qiu, Yongkai, 2023. "A micro-macro coupled permeability model for gas transport in coalbed methane reservoirs," Energy, Elsevier, vol. 284(C).
    8. Song, Xianzhi & Wang, Gaosheng & Shi, Yu & Li, Ruixia & Xu, Zhengming & Zheng, Rui & Wang, Yu & Li, Jiacheng, 2018. "Numerical analysis of heat extraction performance of a deep coaxial borehole heat exchanger geothermal system," Energy, Elsevier, vol. 164(C), pages 1298-1310.
    9. Nie, Bin & Sun, Sijia, 2023. "Thermal recovery of coalbed methane: Modeling of heat and mass transfer in wellbores," Energy, Elsevier, vol. 263(PD).
    10. Li, Jun & Huang, Qiming & Wang, Gang & Wang, Enmao & Ju, Shuang & Qin, Cunli, 2022. "Experimental study of effect of slickwater fracturing on coal pore structure and methane adsorption," Energy, Elsevier, vol. 239(PE).
    11. Sun, Fengrui & Yao, Yuedong & Li, Guozhen & Li, Xiangfang, 2018. "Geothermal energy extraction in CO2 rich basin using abandoned horizontal wells," Energy, Elsevier, vol. 158(C), pages 760-773.
    12. Cui, Guodong & Ren, Shaoran & Zhang, Liang & Ezekiel, Justin & Enechukwu, Chioma & Wang, Yi & Zhang, Rui, 2017. "Geothermal exploitation from hot dry rocks via recycling heat transmission fluid in a horizontal well," Energy, Elsevier, vol. 128(C), pages 366-377.
    13. Wang, Yi & Zhang, Liang & Cui, Guodong & Kang, Jun & Ren, Shaoran, 2019. "Geothermal development and power generation by circulating water and isobutane via a closed-loop horizontal well from hot dry rocks," Renewable Energy, Elsevier, vol. 136(C), pages 909-922.
    14. Jiang, Xingwen & Chen, Mian & Li, Qinghui & Liang, Lihao & Zhong, Zhen & Yu, Bo & Wen, Hang, 2022. "Study on the feasibility of the heat treatment after shale gas reservoir hydration fracturing," Energy, Elsevier, vol. 254(PB).
    15. Fengrui Sun & Yuedong Yao & Xiangfang Li & Guozhen Li & Liang Huang & Hao Liu & Zhili Chen & Qing Liu & Wenyuan Liu & Meng Cao & Song Han, 2018. "Exploitation of heavy oil by supercritical CO2: Effect analysis of supercritical CO2 on H2O at superheated state in integral joint tubing and annuli," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 8(3), pages 557-569, June.
    16. Huang, Wenbo & Cao, Wenjiong & Jiang, Fangming, 2018. "A novel single-well geothermal system for hot dry rock geothermal energy exploitation," Energy, Elsevier, vol. 162(C), pages 630-644.
    17. Chen, Kang & Liu, Xianfeng & Nie, Baisheng & Zhang, Chengpeng & Song, Dazhao & Wang, Longkang & Yang, Tao, 2022. "Mineral dissolution and pore alteration of coal induced by interactions with supercritical CO2," Energy, Elsevier, vol. 248(C).
    18. Cheng, Wen-Long & Huang, Yong-Hua & Lu, De-Tang & Yin, Hong-Ru, 2011. "A novel analytical transient heat-conduction time function for heat transfer in steam injection wells considering the wellbore heat capacity," Energy, Elsevier, vol. 36(7), pages 4080-4088.
    19. Sun, Fengrui & Yao, Yuedong & Li, Xiangfang, 2018. "The heat and mass transfer characteristics of superheated steam coupled with non-condensing gases in horizontal wells with multi-point injection technique," Energy, Elsevier, vol. 143(C), pages 995-1005.
    20. Huang, Feifei & Pu, Chunsheng & Gu, Xiaoyu & Ye, Zhengqin & Khan, Nasir & An, Jie & Wu, Feipeng & Liu, Jing, 2021. "Study of a low-damage efficient-imbibition fracturing fluid without flowback used for low-pressure tight reservoirs," Energy, Elsevier, vol. 222(C).
    21. Bao, Yu & Wang, Jingyi & Gates, Ian D., 2016. "On the physics of cyclic steam stimulation," Energy, Elsevier, vol. 115(P1), pages 969-985.
    22. Liu, Hao & Cheng, Linsong & Wu, Keliu & Huang, Shijun & Maini, Brij B., 2018. "Assessment of energy efficiency and solvent retention inside steam chamber of steam- and solvent-assisted gravity drainage process," Applied Energy, Elsevier, vol. 226(C), pages 287-299.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhang, Xishun & Shi, Junfeng & Zhao, Ruidong & Ma, Gaoqiang & Li, Zhongyang & Wang, Xiaofei & Zhang, Jinke, 2024. "Simulation of wellbore pipe flow in oil production engineering: Offshore concentric double-tube CO2-assisted superheated steam wellbore during SAGD process of heavy oil reservoirs," Energy, Elsevier, vol. 294(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Jun, 2023. "Performance of high temperature steam injection in horizontal wells of heavy oil reservoirs," Energy, Elsevier, vol. 282(C).
    2. Li, Jiangtao & Zhou, Xiaofeng & Liu, Xibao & Gayubov, Abdumalik & Shamil, Sultanov, 2023. "Cross-scale diffusion characteristics in microscale fractures of tight and shale gas reservoirs considering real gas – mixture – body diffusion – water film coupling," Energy, Elsevier, vol. 283(C).
    3. Zhang, Xishun & Shi, Junfeng & Zhao, Ruidong & Ma, Gaoqiang & Li, Zhongyang & Wang, Xiaofei & Zhang, Jinke, 2024. "Simulation of wellbore pipe flow in oil production engineering: Offshore concentric double-tube CO2-assisted superheated steam wellbore during SAGD process of heavy oil reservoirs," Energy, Elsevier, vol. 294(C).
    4. Nie, Bin, 2023. "Diffusion characteristics of shale mixed gases on the wall of microscale fractures," Energy, Elsevier, vol. 284(C).
    5. Zhang, He, 2024. "Study on microscale stress sensitivity of CO2 foam fracturing in tight reservoirs," Energy, Elsevier, vol. 294(C).
    6. Wei, Jianguang & Li, Jiangtao & Zhang, Ao & Shang, Demiao & Zhou, Xiaofeng & Niu, Yintao, 2023. "Influence of shale bedding on development of microscale pores and fractures," Energy, Elsevier, vol. 282(C).
    7. Hu, Xincheng & Banks, Jonathan & Guo, Yunting & Liu, Wei Victor, 2021. "Retrofitting abandoned petroleum wells as doublet deep borehole heat exchangers for geothermal energy production—a numerical investigation," Renewable Energy, Elsevier, vol. 176(C), pages 115-134.
    8. Zhou, Xiaofeng & Wei, Jianguang & Zhao, Junfeng & Zhang, Xiangyu & Fu, Xiaofei & Shamil, Sultanov & Abdumalik, Gayubov & Chen, Yinghe & Wang, Jian, 2024. "Study on pore structure and permeability sensitivity of tight oil reservoirs," Energy, Elsevier, vol. 288(C).
    9. Zhou, Xiaofeng & Zhang, Guolu & Wei, Jianguang & Li, Zhuang & Shamil, Sultanov & Jiang, Guochao & Chen, Yinghe & Zhang, Yanyan & Yang, Siqi & Wu, Jie, 2024. "Research on the recovery efficiency of crude oil in tight reservoirs with different pore sizes," Energy, Elsevier, vol. 306(C).
    10. Nie, Bin & Sun, Sijia, 2023. "Thermal recovery of offshore coalbed methane reservoirs: Flow characteristics of superheated steam in wellbores," Energy, Elsevier, vol. 266(C).
    11. Wei, Jianguang & Fu, Lanqing & Zhao, Guozhong & Zhao, Xiaoqing & Liu, Xinrong & Wang, Anlun & Wang, Yan & Cao, Sheng & Jin, Yuhan & Yang, Fengrui & Liu, Tianyang & Yang, Ying, 2023. "Nuclear magnetic resonance study on imbibition and stress sensitivity of lamellar shale oil reservoir," Energy, Elsevier, vol. 282(C).
    12. Nie, Bin, 2023. "Study on thermal decomposition of oil shale: Two-phase fluid simulation in wellbore," Energy, Elsevier, vol. 272(C).
    13. Li, Jiangtao & Zhou, Xiaofeng & Gayubov, Abdumalik & Shamil, Sultanov, 2023. "Study on production performance characteristics of horizontal wells in low permeability and tight oil reservoirs," Energy, Elsevier, vol. 284(C).
    14. Wei, Jianguang & Liang, Shuang & Zhang, Dong & Li, Jiangtao & Zhou, Runnan, 2023. "Frozen core experimental study on oil-water distribution characteristics at different stages of water flooding in low permeability oil reservoirs," Energy, Elsevier, vol. 278(PB).
    15. Sun, Fengrui & Liu, Dameng & Cai, Yidong & Qiu, Yongkai, 2023. "A micro-macro coupled permeability model for gas transport in coalbed methane reservoirs," Energy, Elsevier, vol. 284(C).
    16. Nie, Bin & Sun, Sijia, 2023. "Thermal recovery of coalbed methane: Modeling of heat and mass transfer in wellbores," Energy, Elsevier, vol. 263(PD).
    17. Wei, Jianguang & Zhou, Xiaofeng & Shamil, Sultanov & Yuriy, Kotenev & Yang, Erlong & Yang, Ying & Wang, Anlun, 2024. "High-pressure mercury intrusion analysis of pore structure in typical lithofacies shale," Energy, Elsevier, vol. 295(C).
    18. Sun, Fengrui & Yao, Yuedong & Li, Guozhen & Li, Xiangfang, 2018. "Geothermal energy extraction in CO2 rich basin using abandoned horizontal wells," Energy, Elsevier, vol. 158(C), pages 760-773.
    19. Duan, Zhonghui & Zhang, Yongmin & Yang, Fu & Liu, Meijuan & Wang, Zhendong & Zhao, Youzhi & Ma, Li, 2024. "Research on controllable shock wave technology for in-situ development of tar-rich coal," Energy, Elsevier, vol. 288(C).
    20. Sun, Fengrui & Liu, Dameng & Cai, Yidong & Qiu, Yongkai, 2023. "Surface jump mechanism of gas molecules in strong adsorption field of coalbed methane reservoirs," Applied Energy, Elsevier, vol. 349(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:282:y:2023:i:c:s0360544223023538. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.