Nothing Special   »   [go: up one dir, main page]

IDEAS home Printed from https://ideas.repec.org/a/eee/gamebe/v55y2006i1p100-111.html
   My bibliography  Save this article

Finitely repeated games: A generalized Nash folk theorem

Author

Listed:
  • Gonzalez-Diaz, Julio
Abstract
No abstract is available for this item.

Suggested Citation

  • Gonzalez-Diaz, Julio, 2006. "Finitely repeated games: A generalized Nash folk theorem," Games and Economic Behavior, Elsevier, vol. 55(1), pages 100-111, April.
  • Handle: RePEc:eee:gamebe:v:55:y:2006:i:1:p:100-111
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0899-8256(05)00034-5
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jean-Pierre Benoît & Vijay Krishna, 1996. "The Folk Theorems for Repeated Games - A Synthesis," Discussion Papers 96-03, University of Copenhagen. Department of Economics.
    2. Wen, Quan, 1994. "The "Folk Theorem" for Repeated Games with Complete Information," Econometrica, Econometric Society, vol. 62(4), pages 949-954, July.
    3. Fudenberg, Drew & Maskin, Eric, 1991. "On the dispensability of public randomization in discounted repeated games," Journal of Economic Theory, Elsevier, vol. 53(2), pages 428-438, April.
    4. Wojciech Olszewski, 1998. "Note Perfect folk theorems. Does public randomization matter?," International Journal of Game Theory, Springer;Game Theory Society, vol. 27(1), pages 147-156.
    5. Drew Fudenberg & Eric Maskin, 2008. "The Folk Theorem In Repeated Games With Discounting Or With Incomplete Information," World Scientific Book Chapters, in: Drew Fudenberg & David K Levine (ed.), A Long-Run Collaboration On Long-Run Games, chapter 11, pages 209-230, World Scientific Publishing Co. Pte. Ltd..
    6. Abreu, Dilip & Dutta, Prajit K & Smith, Lones, 1994. "The Folk Theorem for Repeated Games: A NEU Condition," Econometrica, Econometric Society, vol. 62(4), pages 939-948, July.
    7. Smith, Lones, 1995. "Necessary and Sufficient Conditions for the Perfect Finite Horizon Folk Theorem," Econometrica, Econometric Society, vol. 63(2), pages 425-430, March.
    8. Gossner, Olivier, 1995. "The Folk Theorem for Finitely Repeated Games with Mixed Strategies," International Journal of Game Theory, Springer;Game Theory Society, vol. 24(1), pages 95-107.
    9. Benoit, Jean-Pierre & Krishna, Vijay, 1985. "Finitely Repeated Games," Econometrica, Econometric Society, vol. 53(4), pages 905-922, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. repec:kbb:dpaper:2011-44 is not listed on IDEAS
    2. Contou-Carrère, Pauline & Tomala, Tristan, 2011. "Finitely repeated games with semi-standard monitoring," Journal of Mathematical Economics, Elsevier, vol. 47(1), pages 14-21, January.
    3. Renou, Ludovic, 2009. "Commitment games," Games and Economic Behavior, Elsevier, vol. 66(1), pages 488-505, May.
    4. Miyahara, Yasuyuki & Sekiguchi, Tadashi, 2013. "Finitely repeated games with monitoring options," Journal of Economic Theory, Elsevier, vol. 148(5), pages 1929-1952.
    5. Chen, Bo & Takahashi, Satoru, 2012. "A folk theorem for repeated games with unequal discounting," Games and Economic Behavior, Elsevier, vol. 76(2), pages 571-581.
    6. Bo Chen & Satoru Fujishige, 2013. "On the feasible payoff set of two-player repeated games with unequal discounting," International Journal of Game Theory, Springer;Game Theory Society, vol. 42(1), pages 295-303, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ghislain-Herman Demeze-Jouatsa, 2020. "A complete folk theorem for finitely repeated games," International Journal of Game Theory, Springer;Game Theory Society, vol. 49(4), pages 1129-1142, December.
    2. Jean-Pierre Benoît & Vijay Krishna, 1996. "The Folk Theorems for Repeated Games - A Synthesis," Discussion Papers 96-03, University of Copenhagen. Department of Economics.
    3. Contou-Carrère, Pauline & Tomala, Tristan, 2011. "Finitely repeated games with semi-standard monitoring," Journal of Mathematical Economics, Elsevier, vol. 47(1), pages 14-21, January.
    4. Bo Chen & Satoru Fujishige, 2013. "On the feasible payoff set of two-player repeated games with unequal discounting," International Journal of Game Theory, Springer;Game Theory Society, vol. 42(1), pages 295-303, February.
    5. Lipman, Barton L. & Wang, Ruqu, 2009. "Switching costs in infinitely repeated games," Games and Economic Behavior, Elsevier, vol. 66(1), pages 292-314, May.
    6. Aramendia, Miguel & Wen, Quan, 2020. "Myopic perception in repeated games," Games and Economic Behavior, Elsevier, vol. 119(C), pages 1-14.
    7. Miyahara, Yasuyuki & Sekiguchi, Tadashi, 2013. "Finitely repeated games with monitoring options," Journal of Economic Theory, Elsevier, vol. 148(5), pages 1929-1952.
    8. Chen, Bo & Takahashi, Satoru, 2012. "A folk theorem for repeated games with unequal discounting," Games and Economic Behavior, Elsevier, vol. 76(2), pages 571-581.
    9. Hörner, Johannes & Takahashi, Satoru, 2016. "How fast do equilibrium payoff sets converge in repeated games?," Journal of Economic Theory, Elsevier, vol. 165(C), pages 332-359.
    10. Chantal Marlats, 2015. "A Folk theorem for stochastic games with finite horizon," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 58(3), pages 485-507, April.
    11. Pablo Casas-Arce, 2004. "Layoffs and Quits in Repeated Games," Economics Series Working Papers 199, University of Oxford, Department of Economics.
    12. Dasgupta, Ani & Ghosh, Sambuddha, 2022. "Self-accessibility and repeated games with asymmetric discounting," Journal of Economic Theory, Elsevier, vol. 200(C).
    13. Laclau, Marie & Tomala, Tristan, 2017. "Repeated games with public deterministic monitoring," Journal of Economic Theory, Elsevier, vol. 169(C), pages 400-424.
    14. Demeze-Jouatsa, Ghislain-Herman, 2018. "A complete folk theorem for finitely repeated games," Center for Mathematical Economics Working Papers 584, Center for Mathematical Economics, Bielefeld University.
    15. Zhonghao SHUI, 2020. "Degree-K subgame perfect Nash equilibria and the folk theorem," Discussion papers e-20-001, Graduate School of Economics , Kyoto University.
    16. Barton L. Lipman & Ruqu Wang, 2006. "Switching Costs in Infinitely Repeated Games1," Boston University - Department of Economics - Working Papers Series WP2006-003, Boston University - Department of Economics.
    17. Barlo, Mehmet & Carmona, Guilherme & Sabourian, Hamid, 2016. "Bounded memory Folk Theorem," Journal of Economic Theory, Elsevier, vol. 163(C), pages 728-774.
    18. Pablo Casas-Arce, 2010. "Dismissals and quits in repeated games," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 43(1), pages 67-80, April.
    19. Marlats, Chantal, 2019. "Perturbed finitely repeated games," Mathematical Social Sciences, Elsevier, vol. 98(C), pages 39-46.
    20. Yuichi Yamamoto, 2010. "The use of public randomization in discounted repeated games," International Journal of Game Theory, Springer;Game Theory Society, vol. 39(3), pages 431-443, July.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:gamebe:v:55:y:2006:i:1:p:100-111. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/622836 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.