Nothing Special   »   [go: up one dir, main page]

IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v203y2017icp723-736.html
   My bibliography  Save this article

Development of an energy atlas for renovation of the multifamily building stock in Sweden

Author

Listed:
  • Johansson, Tim
  • Olofsson, Thomas
  • Mangold, Mikael
Abstract
Many studies have highlighted the importance of retrofitting to mitigate the energy use of building stocks. An important step in the development of renovation strategy and energy conservation advising is to gather information of the energy performance of the existing buildings. However, renovation strategies must also consider the socio-economic challenges associated with the cost of energy retrofitting. This paper describes the development of an energy atlas of the multifamily building stock in Sweden for visualizing and analyzing energy use and renovation needs. The atlas has been developed using Extract Transform and Load technology (ETL) to aggregate information on the energy performance, building ownership, renovation status, and socio-economic status of inhabitants from various data sources. The atlas can visualize the energy use and renovation status of multifamily buildings in 2D maps and 3D models, displaying data for either individual buildings or aggregated data on spatial scales ranging from 250×250m squares through district and municipality to county areas. A demonstration of its use on national and city scales indicates that energy retrofits of multifamily buildings reaching a service life of 50years can reduce the energy use of the existing building stock by up to 50% relative to 1990. However, costs associated with renovation and energy retrofits of multifamily buildings can be problematic, especially in economically weak suburbs. A good understanding of past and future renovation needs and socio-economic consequences is important in the development of a sustainable national renovation strategy.

Suggested Citation

  • Johansson, Tim & Olofsson, Thomas & Mangold, Mikael, 2017. "Development of an energy atlas for renovation of the multifamily building stock in Sweden," Applied Energy, Elsevier, vol. 203(C), pages 723-736.
  • Handle: RePEc:eee:appene:v:203:y:2017:i:c:p:723-736
    DOI: 10.1016/j.apenergy.2017.06.027
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261917307857
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2017.06.027?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Swan, Lukas G. & Ugursal, V. Ismet, 2009. "Modeling of end-use energy consumption in the residential sector: A review of modeling techniques," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(8), pages 1819-1835, October.
    2. Kazas, Georgios & Fabrizio, Enrico & Perino, Marco, 2017. "Energy demand profile generation with detailed time resolution at an urban district scale: A reference building approach and case study," Applied Energy, Elsevier, vol. 193(C), pages 243-262.
    3. Gordon Mitchell, 1996. "Problems And Fundamentals Of Sustainable Development Indicators," Sustainable Development, John Wiley & Sons, Ltd., vol. 4(1), pages 1-11.
    4. David Wachsmuth & Daniel Aldana Cohen & Hillary Angelo, 2016. "Expand the frontiers of urban sustainability," Nature, Nature, vol. 536(7617), pages 391-393, August.
    5. Ástmarsson, Björn & Jensen, Per Anker & Maslesa, Esmir, 2013. "Sustainable renovation of residential buildings and the landlord/tenant dilemma," Energy Policy, Elsevier, vol. 63(C), pages 355-362.
    6. Kontokosta, Constantine E. & Tull, Christopher, 2017. "A data-driven predictive model of city-scale energy use in buildings," Applied Energy, Elsevier, vol. 197(C), pages 303-317.
    7. Schade, Jutta & Wallström, Peter & Olofsson, Thomas & Lagerqvist, Ove, 2013. "A comparative study of the design and construction process of energy efficient buildings in Germany and Sweden," Energy Policy, Elsevier, vol. 58(C), pages 28-37.
    8. Kucuksari, Sadik & Khaleghi, Amirreza M. & Hamidi, Maryam & Zhang, Ye & Szidarovszky, Ferenc & Bayraksan, Guzin & Son, Young-Jun, 2014. "An Integrated GIS, optimization and simulation framework for optimal PV size and location in campus area environments," Applied Energy, Elsevier, vol. 113(C), pages 1601-1613.
    9. Tim Johansson & Eugenia Segerstedt & Thomas Olofsson & Mats Jakobsson, 2016. "Revealing Social Values by 3D City Visualization in City Transformations," Sustainability, MDPI, vol. 8(2), pages 1-17, February.
    10. Strzalka, Aneta & Alam, Nazmul & Duminil, Eric & Coors, Volker & Eicker, Ursula, 2012. "Large scale integration of photovoltaics in cities," Applied Energy, Elsevier, vol. 93(C), pages 413-421.
    11. He, Qi & Jiang, Xujia & Gouldson, Andy & Sudmant, Andrew & Guan, Dabo & Colenbrander, Sarah & Xue, Tao & Zheng, Bo & Zhang, Qiang, 2016. "Climate change mitigation in Chinese megacities: A measures-based analysis of opportunities in the residential sector," Applied Energy, Elsevier, vol. 184(C), pages 769-778.
    12. Hans Lind & Kerstin Annadotter & Folke Björk & Lovisa Högberg & Tord Af Klintberg, 2016. "Sustainable Renovation Strategy in the Swedish Million Homes Programme: A Case Study," Sustainability, MDPI, vol. 8(4), pages 1-12, April.
    13. Fonseca, Jimeno A. & Schlueter, Arno, 2015. "Integrated model for characterization of spatiotemporal building energy consumption patterns in neighborhoods and city districts," Applied Energy, Elsevier, vol. 142(C), pages 247-265.
    14. Yeo, In-Ae & Yoon, Seong-Hwan & Yee, Jurng-Jae, 2013. "Development of an Environment and energy Geographical Information System (E-GIS) construction model to support environmentally friendly urban planning," Applied Energy, Elsevier, vol. 104(C), pages 723-739.
    15. Alhamwi, Alaa & Medjroubi, Wided & Vogt, Thomas & Agert, Carsten, 2017. "GIS-based urban energy systems models and tools: Introducing a model for the optimisation of flexibilisation technologies in urban areas," Applied Energy, Elsevier, vol. 191(C), pages 1-9.
    16. De Boeck, L. & Verbeke, S. & Audenaert, A. & De Mesmaeker, L., 2015. "Improving the energy performance of residential buildings: A literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 960-975.
    17. Mata, Érika & Sasic Kalagasidis, Angela & Johnsson, Filip, 2013. "Energy usage and technical potential for energy saving measures in the Swedish residential building stock," Energy Policy, Elsevier, vol. 55(C), pages 404-414.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Valeria Todeschi & Roberto Boghetti & Jérôme H. Kämpf & Guglielmina Mutani, 2021. "Evaluation of Urban-Scale Building Energy-Use Models and Tools—Application for the City of Fribourg, Switzerland," Sustainability, MDPI, vol. 13(4), pages 1-22, February.
    2. Mikael Mangold & Magnus Österbring & Conny Overland & Tim Johansson & Holger Wallbaum, 2018. "Building Ownership, Renovation Investments, and Energy Performance—A Study of Multi-Family Dwellings in Gothenburg," Sustainability, MDPI, vol. 10(5), pages 1-16, May.
    3. Pardalis, Georgios & Talmar, Madis & Keskin, Duygu, 2021. "To be or not to be: The organizational conditions for launching one-stop-shops for energy related renovations," Energy Policy, Elsevier, vol. 159(C).
    4. Fahlstedt, Oskar & Temeljotov-Salaj, Alenka & Lohne, Jardar & Bohne, Rolf André, 2022. "Holistic assessment of carbon abatement strategies in building refurbishment literature — A scoping review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    5. Wilson, C. & Pettifor, H. & Chryssochoidis, G., 2018. "Quantitative modelling of why and how homeowners decide to renovate energy efficiently," Applied Energy, Elsevier, vol. 212(C), pages 1333-1344.
    6. Khayatian, Fazel & Sarto, Luca & Dall'O', Giuliano, 2017. "Building energy retrofit index for policy making and decision support at regional and national scales," Applied Energy, Elsevier, vol. 206(C), pages 1062-1075.
    7. Coruhlu, Yakup Emre & Solgun, Necmettin & Baser, Volkan & Terzi, Fatih, 2022. "Revealing the solar energy potential by integration of GIS and AHP in order to compare decisions of the land use on the environmental plans," Land Use Policy, Elsevier, vol. 113(C).
    8. Yang, Xining & Hu, Mingming & Heeren, Niko & Zhang, Chunbo & Verhagen, Teun & Tukker, Arnold & Steubing, Bernhard, 2020. "A combined GIS-archetype approach to model residential space heating energy: A case study for the Netherlands including validation," Applied Energy, Elsevier, vol. 280(C).
    9. Pei-Yu Wu & Kristina Mjörnell & Mikael Mangold & Claes Sandels & Tim Johansson, 2021. "A Data-Driven Approach to Assess the Risk of Encountering Hazardous Materials in the Building Stock Based on Environmental Inventories," Sustainability, MDPI, vol. 13(14), pages 1-23, July.
    10. Xavier Faure & Tim Johansson & Oleksii Pasichnyi, 2022. "The Impact of Detail, Shadowing and Thermal Zoning Levels on Urban Building Energy Modelling (UBEM) on a District Scale," Energies, MDPI, vol. 15(4), pages 1-18, February.
    11. Marta Gangolells & Miquel Casals & Jaume Ferré-Bigorra & Núria Forcada & Marcel Macarulla & Kàtia Gaspar & Blanca Tejedor, 2019. "Energy Benchmarking of Existing Office Stock in Spain: Trends and Drivers," Sustainability, MDPI, vol. 11(22), pages 1-24, November.
    12. Johari, F. & Lindberg, O. & Ramadhani, U.H. & Shadram, F. & Munkhammar, J. & Widén, J., 2024. "Analysis of large-scale energy retrofit of residential buildings and their impact on the electricity grid using a validated UBEM," Applied Energy, Elsevier, vol. 361(C).
    13. Ayikoe Tettey, Uniben Yao & Gustavsson, Leif, 2020. "Energy savings and overheating risk of deep energy renovation of a multi-storey residential building in a cold climate under climate change," Energy, Elsevier, vol. 202(C).
    14. Pagliaro, Francesca & Hugony, Francesca & Zanghirella, Fabio & Basili, Rossano & Misceo, Monica & Colasuonno, Luca & Del Fatto, Vincenzo, 2021. "Assessing building energy performance and energy policy impact through the combined analysis of EPC data – The Italian case study of SIAPE," Energy Policy, Elsevier, vol. 159(C).
    15. Jenny von Platten & Claes Sandels & Kajsa Jörgensson & Viktor Karlsson & Mikael Mangold & Kristina Mjörnell, 2020. "Using Machine Learning to Enrich Building Databases—Methods for Tailored Energy Retrofits," Energies, MDPI, vol. 13(10), pages 1-22, May.
    16. Pasichnyi, Oleksii & Wallin, Jörgen & Levihn, Fabian & Shahrokni, Hossein & Kordas, Olga, 2019. "Energy performance certificates — New opportunities for data-enabled urban energy policy instruments?," Energy Policy, Elsevier, vol. 127(C), pages 486-499.
    17. Stefan Blomqvist & Lina La Fleur & Shahnaz Amiri & Patrik Rohdin & Louise Ödlund (former Trygg), 2019. "The Impact on System Performance When Renovating a Multifamily Building Stock in a District Heated Region," Sustainability, MDPI, vol. 11(8), pages 1-18, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ma, Weiwu & Fang, Song & Liu, Gang & Zhou, Ruoyu, 2017. "Modeling of district load forecasting for distributed energy system," Applied Energy, Elsevier, vol. 204(C), pages 181-205.
    2. Yang, Xiu'e & Liu, Shuli & Zou, Yuliang & Ji, Wenjie & Zhang, Qunli & Ahmed, Abdullahi & Han, Xiaojing & Shen, Yongliang & Zhang, Shaoliang, 2022. "Energy-saving potential prediction models for large-scale building: A state-of-the-art review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).
    3. Nutkiewicz, Alex & Yang, Zheng & Jain, Rishee K., 2018. "Data-driven Urban Energy Simulation (DUE-S): A framework for integrating engineering simulation and machine learning methods in a multi-scale urban energy modeling workflow," Applied Energy, Elsevier, vol. 225(C), pages 1176-1189.
    4. Kristina Mjörnell & Paula Femenías & Kerstin Annadotter, 2019. "Renovation Strategies for Multi-Residential Buildings from the Record Years in Sweden—Profit-Driven or Socioeconomically Responsible?," Sustainability, MDPI, vol. 11(24), pages 1-18, December.
    5. Abbasabadi, Narjes & Ashayeri, Mehdi & Azari, Rahman & Stephens, Brent & Heidarinejad, Mohammad, 2019. "An integrated data-driven framework for urban energy use modeling (UEUM)," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    6. Ali, Usman & Shamsi, Mohammad Haris & Bohacek, Mark & Purcell, Karl & Hoare, Cathal & Mangina, Eleni & O’Donnell, James, 2020. "A data-driven approach for multi-scale GIS-based building energy modeling for analysis, planning and support decision making," Applied Energy, Elsevier, vol. 279(C).
    7. Bianchi, Carlo & Zhang, Liang & Goldwasser, David & Parker, Andrew & Horsey, Henry, 2020. "Modeling occupancy-driven building loads for large and diversified building stocks through the use of parametric schedules," Applied Energy, Elsevier, vol. 276(C).
    8. Kazas, Georgios & Fabrizio, Enrico & Perino, Marco, 2017. "Energy demand profile generation with detailed time resolution at an urban district scale: A reference building approach and case study," Applied Energy, Elsevier, vol. 193(C), pages 243-262.
    9. Ferrari, Simone & Zagarella, Federica & Caputo, Paola & D'Amico, Antonino, 2019. "Results of a literature review on methods for estimating buildings energy demand at district level," Energy, Elsevier, vol. 175(C), pages 1130-1137.
    10. Oraiopoulos, A. & Howard, B., 2022. "On the accuracy of Urban Building Energy Modelling," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
    11. Shen, Pengyuan & Wang, Huilong, 2024. "Archetype building energy modeling approaches and applications: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 199(C).
    12. Langevin, J. & Reyna, J.L. & Ebrahimigharehbaghi, S. & Sandberg, N. & Fennell, P. & Nägeli, C. & Laverge, J. & Delghust, M. & Mata, É. & Van Hove, M. & Webster, J. & Federico, F. & Jakob, M. & Camaras, 2020. "Developing a common approach for classifying building stock energy models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
    13. Gholami, M. & Barbaresi, A. & Torreggiani, D. & Tassinari, P., 2020. "Upscaling of spatial energy planning, phases, methods, and techniques: A systematic review through meta-analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 132(C).
    14. Jenny von Platten & Karl de Fine Licht & Mikael Mangold & Kristina Mjörnell, 2021. "Renovating on Unequal Premises: A Normative Framework for a Just Renovation Wave in Swedish Multifamily Housing," Energies, MDPI, vol. 14(19), pages 1-32, September.
    15. Ye, Zhongnan & Cheng, Kuangly & Hsu, Shu-Chien & Wei, Hsi-Hsien & Cheung, Clara Man, 2021. "Identifying critical building-oriented features in city-block-level building energy consumption: A data-driven machine learning approach," Applied Energy, Elsevier, vol. 301(C).
    16. Pérez-Sánchez, Laura À. & Velasco-Fernández, Raúl & Giampietro, Mario, 2022. "Factors and actions for the sustainability of the residential sector. The nexus of energy, materials, space, and time use," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    17. Katal, Ali & Mortezazadeh, Mohammad & Wang, Liangzhu (Leon), 2019. "Modeling building resilience against extreme weather by integrated CityFFD and CityBEM simulations," Applied Energy, Elsevier, vol. 250(C), pages 1402-1417.
    18. Mastrucci, Alessio & Marvuglia, Antonino & Benetto, Enrico & Leopold, Ulrich, 2020. "A spatio-temporal life cycle assessment framework for building renovation scenarios at the urban scale," Renewable and Sustainable Energy Reviews, Elsevier, vol. 126(C).
    19. Ayikoe Tettey, Uniben Yao & Gustavsson, Leif, 2020. "Energy savings and overheating risk of deep energy renovation of a multi-storey residential building in a cold climate under climate change," Energy, Elsevier, vol. 202(C).
    20. Martin Eriksson & Jan Akander & Bahram Moshfegh, 2022. "Investigating Energy Use in a City District in Nordic Climate Using Energy Signature," Energies, MDPI, vol. 15(5), pages 1-22, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:203:y:2017:i:c:p:723-736. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.