Nothing Special   »   [go: up one dir, main page]

IDEAS home Printed from https://ideas.repec.org/a/bpj/strimo/v30y2013i1p21-54n2.html
   My bibliography  Save this article

Properties of hierarchical Archimedean copulas

Author

Listed:
  • Okhrin Ostap
  • Okhrin Yarema
  • Schmid Wolfgang
Abstract
In this paper we analyse the properties of hierarchical Archimedean copulas. This class is a generalisation of the Archimedean copulas and allows for general non-exchangeable dependency structures. We show that the structure of the copula can be uniquely recovered from all bivariate margins. We derive the distribution of the copula values, which is particularly useful for tests and constructing confidence intervals. Furthermore, we analyse dependence orderings, multivariate dependence measures, and extreme value copulas. We pay special attention to the tail dependencies and derive several tail dependence indices for general hierarchical Archimedean copulas.

Suggested Citation

  • Okhrin Ostap & Okhrin Yarema & Schmid Wolfgang, 2013. "Properties of hierarchical Archimedean copulas," Statistics & Risk Modeling, De Gruyter, vol. 30(1), pages 21-54, March.
  • Handle: RePEc:bpj:strimo:v:30:y:2013:i:1:p:21-54:n:2
    DOI: 10.1524/strm.2013.1071
    as

    Download full text from publisher

    File URL: https://doi.org/10.1524/strm.2013.1071
    Download Restriction: For access to full text, subscription to the journal or payment for the individual article is required.

    File URL: https://libkey.io/10.1524/strm.2013.1071?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Nelsen, Roger B., 1997. "Dependence and Order in Families of Archimedean Copulas," Journal of Multivariate Analysis, Elsevier, vol. 60(1), pages 111-122, January.
    2. Genest, Christian & Rivest, Louis-Paul, 1989. "A characterization of gumbel's family of extreme value distributions," Statistics & Probability Letters, Elsevier, vol. 8(3), pages 207-211, August.
    3. Niall Whelan, 2004. "Sampling from Archimedean copulas," Quantitative Finance, Taylor & Francis Journals, vol. 4(3), pages 339-352.
    4. Hofert, Marius, 2008. "Sampling Archimedean copulas," Computational Statistics & Data Analysis, Elsevier, vol. 52(12), pages 5163-5174, August.
    5. Charpentier, Arthur & Segers, Johan, 2009. "Tails of multivariate Archimedean copulas," Journal of Multivariate Analysis, Elsevier, vol. 100(7), pages 1521-1537, August.
    6. Barbe, Philippe & Genest, Christian & Ghoudi, Kilani & Rémillard, Bruno, 1996. "On Kendall's Process," Journal of Multivariate Analysis, Elsevier, vol. 58(2), pages 197-229, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. repec:hum:wpaper:sfb649dp2009-014 is not listed on IDEAS
    2. Cooray Kahadawala, 2018. "Strictly Archimedean copulas with complete association for multivariate dependence based on the Clayton family," Dependence Modeling, De Gruyter, vol. 6(1), pages 1-18, February.
    3. Hélène Cossette & Etienne Marceau & Quang Huy Nguyen & Christian Y. Robert, 2019. "Tail Approximations for Sums of Dependent Regularly Varying Random Variables Under Archimedean Copula Models," Methodology and Computing in Applied Probability, Springer, vol. 21(2), pages 461-490, June.
    4. Okhrin, Ostap, 2010. "Fitting high-dimensional copulae to data," SFB 649 Discussion Papers 2010-022, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    5. Hofert, Marius & Mächler, Martin & McNeil, Alexander J., 2012. "Likelihood inference for Archimedean copulas in high dimensions under known margins," Journal of Multivariate Analysis, Elsevier, vol. 110(C), pages 133-150.
    6. Jeguirim, Khaled & Ben Salem, Leila, 2024. "Unveiling extreme dependencies between oil price shocks and inflation in Tunisia: Insights from a copula dcc garch approach," MPRA Paper 121616, University Library of Munich, Germany.
    7. Jean-David Fermanian, 2012. "An overview of the goodness-of-fit test problem for copulas," Papers 1211.4416, arXiv.org.
    8. Li, Haijun & Wu, Peiling, 2013. "Extremal dependence of copulas: A tail density approach," Journal of Multivariate Analysis, Elsevier, vol. 114(C), pages 99-111.
    9. Bücher, Axel & Dette, Holger & Volgushev, Stanislav, 2012. "A test for Archimedeanity in bivariate copula models," Journal of Multivariate Analysis, Elsevier, vol. 110(C), pages 121-132.
    10. Diakarya Barro & Moumouni Diallo & Remi Guillaume Bagré, 2016. "Spatial Tail Dependence and Survival Stability in a Class of Archimedean Copulas," International Journal of Mathematics and Mathematical Sciences, Hindawi, vol. 2016, pages 1-8, July.
    11. Segers, Johan & Uyttendaele, Nathan, 2014. "Nonparametric estimation of the tree structure of a nested Archimedean copula," Computational Statistics & Data Analysis, Elsevier, vol. 72(C), pages 190-204.
    12. Bee, Marco, 2011. "Adaptive Importance Sampling for simulating copula-based distributions," Insurance: Mathematics and Economics, Elsevier, vol. 48(2), pages 237-245, March.
    13. Zhu, Wenjun & Wang, Chou-Wen & Tan, Ken Seng, 2016. "Structure and estimation of Lévy subordinated hierarchical Archimedean copulas (LSHAC): Theory and empirical tests," Journal of Banking & Finance, Elsevier, vol. 69(C), pages 20-36.
    14. Elena Di Bernardino & Didier Rullière, 2017. "A note on upper-patched generators for Archimedean copulas," Post-Print hal-01347869, HAL.
    15. Härdle, Wolfgang Karl & Okhrin, Ostap & Okhrin, Yarema, 2008. "Modeling dependencies in finance using copulae," SFB 649 Discussion Papers 2008-043, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    16. Hering, Christian & Hofert, Marius & Mai, Jan-Frederik & Scherer, Matthias, 2010. "Constructing hierarchical Archimedean copulas with Lévy subordinators," Journal of Multivariate Analysis, Elsevier, vol. 101(6), pages 1428-1433, July.
    17. repec:hum:wpaper:sfb649dp2010-022 is not listed on IDEAS
    18. Zhang, Ran & Czado, Claudia & Min, Aleksey, 2011. "Efficient maximum likelihood estimation of copula based meta t-distributions," Computational Statistics & Data Analysis, Elsevier, vol. 55(3), pages 1196-1214, March.
    19. Matthieu Garcin & Maxime L. D. Nicolas, 2024. "Nonparametric estimator of the tail dependence coefficient: balancing bias and variance," Statistical Papers, Springer, vol. 65(8), pages 4875-4913, October.
    20. Penikas, H., 2010. "Financial Applications of Copula-Models," Journal of the New Economic Association, New Economic Association, issue 7, pages 24-44.
    21. Masih-Tehrani, Behdad & Xu, Susan H. & Kumara, Soundar & Li, Haijun, 2011. "A single-period analysis of a two-echelon inventory system with dependent supply uncertainty," Transportation Research Part B: Methodological, Elsevier, vol. 45(8), pages 1128-1151, September.

    More about this item

    Keywords

    copula; multivariate distribution; Archimedean copula; stochastic ordering; hierarchical copula;
    All these keywords.

    JEL classification:

    • C16 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Econometric and Statistical Methods; Specific Distributions
    • C46 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods: Special Topics - - - Specific Distributions

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bpj:strimo:v:30:y:2013:i:1:p:21-54:n:2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Peter Golla (email available below). General contact details of provider: https://www.degruyter.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.