Nothing Special   »   [go: up one dir, main page]

IDEAS home Printed from https://ideas.repec.org/a/bla/popmgt/v27y2018i10p1775-1794.html
   My bibliography  Save this article

Parallel Aspect‐Oriented Sentiment Analysis for Sales Forecasting with Big Data

Author

Listed:
  • Raymond Yiu Keung Lau
  • Wenping Zhang
  • Wei Xu
Abstract
While much research work has been devoted to supply chain management and demand forecast, research on designing big data analytics methodologies to enhance sales forecasting is seldom reported in existing literature. The big data of consumer‐contributed product comments on online social media provide management with unprecedented opportunities to leverage collective consumer intelligence for enhancing supply chain management in general and sales forecasting in particular. The main contributions of our work presented in this study are as follows: (1) the design of a novel big data analytics methodology that is underpinned by a parallel aspect‐oriented sentiment analysis algorithm for mining consumer intelligence from a huge number of online product comments; (2) the design and the large‐scale empirical test of a sentiment enhanced sales forecasting method that is empowered by a parallel co‐evolutionary extreme learning machine. Based on real‐world big datasets, our experimental results confirm that consumer sentiments mined from big data can improve the accuracy of sales forecasting across predictive models and datasets. The managerial implication of our work is that firms can apply the proposed big data analytics methodology to enhance sales forecasting performance. Thereby, the problem of under/over‐stocking is alleviated and customer satisfaction is improved.

Suggested Citation

  • Raymond Yiu Keung Lau & Wenping Zhang & Wei Xu, 2018. "Parallel Aspect‐Oriented Sentiment Analysis for Sales Forecasting with Big Data," Production and Operations Management, Production and Operations Management Society, vol. 27(10), pages 1775-1794, October.
  • Handle: RePEc:bla:popmgt:v:27:y:2018:i:10:p:1775-1794
    DOI: 10.1111/poms.12737
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/poms.12737
    Download Restriction: no

    File URL: https://libkey.io/10.1111/poms.12737?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:popmgt:v:27:y:2018:i:10:p:1775-1794. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://onlinelibrary.wiley.com/journal/10.1111/(ISSN)1937-5956 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.