Causal Diagrams for Treatment Effect Estimation with Application to Efficient Covariate Selection
Author
Suggested Citation
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Persson, Emma & Häggström, Jenny & Waernbaum, Ingeborg & de Luna, Xavier, 2017. "Data-driven algorithms for dimension reduction in causal inference," Computational Statistics & Data Analysis, Elsevier, vol. 105(C), pages 280-292.
- Hoderlein, Stefan & Su, Liangjun & White, Halbert & Yang, Thomas Tao, 2016.
"Testing for monotonicity in unobservables under unconfoundedness,"
Journal of Econometrics, Elsevier, vol. 193(1), pages 183-202.
- Stefan Hoderlein & Liangjun Su & Halbert White & Thomas Tao Yang, 2015. "Testing for Monotonicity in Unobservables under Unconfoundedness," Boston College Working Papers in Economics 899, Boston College Department of Economics.
- Pingel, Ronnie & Waernbaum, Ingeborg, 2015. "Correlation and efficiency of propensity score-based estimators for average causal effects," Working Paper Series 2015:3, IFAU - Institute for Evaluation of Labour Market and Education Policy.
- Eva Deuchert & Martin Huber, 2017.
"A Cautionary Tale About Control Variables in IV Estimation,"
Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 79(3), pages 411-425, June.
- Deuchert, Eva & Huber, Martin, 2014. "A cautionary tale about control variables in IV estimation," Economics Working Paper Series 1439, University of St. Gallen, School of Economics and Political Science.
- Deuchert, Eva & Huber, Martin, 2014. "A cautionary tale about control variables in IV estimation," FSES Working Papers 453, Faculty of Economics and Social Sciences, University of Freiburg/Fribourg Switzerland.
- Lewbel, Arthur & Lu, Xun & Su, Liangjun, 2015.
"Specification testing for transformation models with an application to generalized accelerated failure-time models,"
Journal of Econometrics, Elsevier, vol. 184(1), pages 81-96.
- Arthur Lewbel & Xun Lu & Liangjun Su, 2012. "Specification Testing for Transformation Models with an Application to Generalized Accelerated Failure-time Models," Boston College Working Papers in Economics 817, Boston College Department of Economics, revised 01 May 2013.
- Halbert White & Karim Chalak, 2013. "Identification and Identification Failure for Treatment Effects Using Structural Systems," Econometric Reviews, Taylor & Francis Journals, vol. 32(3), pages 273-317, November.
- Farrell, Max H., 2015.
"Robust inference on average treatment effects with possibly more covariates than observations,"
Journal of Econometrics, Elsevier, vol. 189(1), pages 1-23.
- Max H. Farrell, 2013. "Robust Inference on Average Treatment Effects with Possibly More Covariates than Observations," Papers 1309.4686, arXiv.org, revised Feb 2018.
- Xun Lu, 2015. "A Covariate Selection Criterion for Estimation of Treatment Effects," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 33(4), pages 506-522, October.
- Lu, Xun & White, Halbert, 2014. "Robustness checks and robustness tests in applied economics," Journal of Econometrics, Elsevier, vol. 178(P1), pages 194-206.
- Arno Parolini & Wei Wu Tan & Aron Shlonsky, 2019. "Decision-based models of the implementation of interventions in systems of healthcare: Implementation outcomes and intervention effectiveness in complex service environments," PLOS ONE, Public Library of Science, vol. 14(10), pages 1-17, October.
- Graevenitz, Georg von & Weber, Richard, 2011.
"How to Educate Entrepreneurs?,"
Discussion Papers in Business Administration
12280, University of Munich, Munich School of Management.
- Graevenitz, Georg von & Weber, Richard, 2011. "How to Educate Entrepreneurs?," Discussion Papers in Business Administration 12440, University of Munich, Munich School of Management.
- Ali Tafti & Galit Shmueli, 2020. "Beyond Overall Treatment Effects: Leveraging Covariates in Randomized Experiments Guided by Causal Structure," Information Systems Research, INFORMS, vol. 31(4), pages 1183-1199, December.
- Lu, Xun & White, Halbert, 2014. "Testing for separability in structural equations," Journal of Econometrics, Elsevier, vol. 182(1), pages 14-26.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:tpr:restat:v:93:y:2011:i:4:p:1453-1459. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Kelly McDougall (email available below). General contact details of provider: https://direct.mit.edu/journals .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.