Nothing Special   »   [go: up one dir, main page]

IDEAS home Printed from https://ideas.repec.org/a/taf/tcpoxx/v15y2015isup1ps7-s39.html
   My bibliography  Save this article

A review of Chinese CO 2 emission projections to 2030: the role of economic structure and policy

Author

Listed:
  • Michael Grubb
  • Fu Sha
  • Thomas Spencer
  • Nick Hughes
  • Zhongxiang Zhang
  • Paolo Agnolucci
Abstract
The projections of 89 scenarios from 12 different models for the CO 2 emissions of China to 2030 are reviewed, along with wider examinations of lessons from the history of energy forecasting in OECD countries, and of the Chinese macroeconomic situation.Even by 2030, emissions in the scenarios span a factor of almost 2.5, indicating significant range and uncertainty. Statistical analysis of Kaya components suggests the carbon intensity of energy supply to be the strongest determining factor. However, most scenarios assume that industry-super-1 continues to account for more than 50% of total final energy demand. This is in contrast both to historical examples, which have consistently shown economies shifting from energy-intensive industrial bases to service-based structures as income per capita rises, and to recent Chinese policy statements, which reflect a similar ambition. It is also highly salient that major failures in energy and emissions projections can frequently be accounted for in retrospect by failures to anticipate such major economic structural shifts.In conclusion, while the future trajectory of Chinese emissions remains profoundly uncertain, the potential for a significant Chinese macroeconomic transition and its implications for the scale and structure of energy demand will be a crucial factor, to which energy-climate models must pay far more attention. Policy relevance The dramatic growth of Chinese emissions since 2000 has become a major factor in global emission prospects and the international political agenda. Many models project rapid continued emissions growth, but an apparent halt in Chinese emissions in 2014 has amplified debate. Projections and policy need to recognise fundamental uncertainties in emission prospects, because in addition to energy/climate-specific policies, they depend on the progress in Chinese macroeconomic reforms, which are poorly represented in the models we survey. Global projections, the international process, and the design of China's own policies (most obviously, its national cap-and-trade system) need to cope with the possibility of continued growth to peaking in 2030 (the central commitment in China's Intended Nationally Determined Contribution), but must also be prepared to exploit and encourage the possibilities of low-carbon development and much earlier peaking.

Suggested Citation

  • Michael Grubb & Fu Sha & Thomas Spencer & Nick Hughes & Zhongxiang Zhang & Paolo Agnolucci, 2015. "A review of Chinese CO 2 emission projections to 2030: the role of economic structure and policy," Climate Policy, Taylor & Francis Journals, vol. 15(sup1), pages 7-39, December.
  • Handle: RePEc:taf:tcpoxx:v:15:y:2015:i:sup1:p:s7-s39
    DOI: 10.1080/14693062.2015.1101307
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/14693062.2015.1101307
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/14693062.2015.1101307?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Global Energy Assessment Writing Team,, 2012. "Global Energy Assessment," Cambridge Books, Cambridge University Press, number 9781107005198, October.
    2. Global Energy Assessment Writing Team,, 2012. "Global Energy Assessment," Cambridge Books, Cambridge University Press, number 9780521182935, October.
    3. Roger Fouquet, 2008. "Heat, Power and Light," Books, Edward Elgar Publishing, number 4061.
    4. Raghuram G. Rajan, 2010. "Fault Lines: How Hidden Fractures Still Threaten the World Economy," Economics Books, Princeton University Press, edition 1, number 9111.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yong Yang & Junsong Jia & Chundi Chen, 2020. "Residential Energy-Related CO 2 Emissions in China’s Less Developed Regions: A Case Study of Jiangxi," Sustainability, MDPI, vol. 12(5), pages 1-28, March.
    2. Liu, Junling & Wang, Ke & Zou, Ji & Kong, Ying, 2019. "The implications of coal consumption in the power sector for China’s CO2 peaking target," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    3. Chen, Cuicui & Zeckhauser, Richard, 2018. "Collective action in an asymmetric world," Journal of Public Economics, Elsevier, vol. 158(C), pages 103-112.
    4. Rodríguez, Miguel, 2022. "Why do many prospective analyses of CO2 emissions fail? An illustrative example from China," Energy, Elsevier, vol. 244(PB).
    5. Hepburn, Cameron & Mealy, Penny, 2017. "Transformational Change: Parallels for addressing climate and development goals," INET Oxford Working Papers 2019-02, Institute for New Economic Thinking at the Oxford Martin School, University of Oxford, revised May 2019.
    6. Cui, Lianbiao & Li, Rongjing & Song, Malin & Zhu, Lei, 2019. "Can China achieve its 2030 energy development targets by fulfilling carbon intensity reduction commitments?," Energy Economics, Elsevier, vol. 83(C), pages 61-73.
    7. Zheng, Jiali & Mi, Zhifu & Coffman, D'Maris & Milcheva, Stanimira & Shan, Yuli & Guan, Dabo & Wang, Shouyang, 2019. "Regional development and carbon emissions in China," Energy Economics, Elsevier, vol. 81(C), pages 25-36.
    8. Rafał Nagaj & Bożena Gajdzik & Radosław Wolniak & Wieslaw Wes Grebski, 2024. "The Impact of Deep Decarbonization Policy on the Level of Greenhouse Gas Emissions in the European Union," Energies, MDPI, vol. 17(5), pages 1-23, March.
    9. Junyao Wang & Anqi Liu, 2022. "Scenario Analysis of Energy-Related CO 2 Emissions from Current Policies: A Case Study of Guangdong Province," Sustainability, MDPI, vol. 14(14), pages 1-20, July.
    10. Chaisri Tarasawatpipat & Thammarak Srimarut & Witthaya Mekhum, 2020. "Seeing Domestic and Industrial Logistic in Context of CO2 Emission: Role of Container Port Traffic, Railway Transport, and Air Transport Intensity in Thailand," International Journal of Energy Economics and Policy, Econjournals, vol. 10(5), pages 570-576.
    11. Peng Zhang & Maosheng Duan & Guangzhi Yin, 2018. "The Periodic Characteristics of China’s Economic Carbon Intensity Change and the Impacts of Economic Transformation," Energies, MDPI, vol. 11(4), pages 1-21, April.
    12. Wu, Rui & Dai, Hancheng & Geng, Yong & Xie, Yang & Tian, Xu, 2019. "Impacts of export restructuring on national economy and CO2 emissions: A general equilibrium analysis for China," Applied Energy, Elsevier, vol. 248(C), pages 64-78.
    13. Joshua Sunday Riti & Deyong Song & Yang Shu & Miriam Kamah & Agya Adi Atabani, 2018. "Does renewable energy ensure environmental quality in favour of economic growth? Empirical evidence from China’s renewable development," Quality & Quantity: International Journal of Methodology, Springer, vol. 52(5), pages 2007-2030, September.
    14. Ekundayo P. Mesagan & Wakeel A. Isola & Kazeem B. Ajide, 2019. "The capital investment channel of environmental improvement: evidence from BRICS," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 21(4), pages 1561-1582, August.
    15. Xunzhang, Pan & Wenying, Chen & Clarke, Leon E. & Lining, Wang & Guannan, Liu, 2017. "China's energy system transformation towards the 2°C goal: Implications of different effort-sharing principles," Energy Policy, Elsevier, vol. 103(C), pages 116-126.
    16. Weng, Qingqing & Xu, He, 2018. "A review of China’s carbon trading market," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 613-619.
    17. Ian W.H. Parry & Baoping Shang & Mr. Philippe Wingender & Nate Vernon-Lin & Tarun Narasimhan, 2016. "Climate Mitigation in China: Which Policies Are Most Effective?," IMF Working Papers 2016/148, International Monetary Fund.
    18. Ian Parry & Baoping Shang & Nate Vernon & Philippe Wingender & Tarun Narasimhan, 2020. "Evaluating policies to implement the Paris Agreement: a toolkit with application to China," Chapters, in: Graciela Chichilnisky & Armon Rezai (ed.), Handbook on the Economics of Climate Change, chapter 2, pages 32-67, Edward Elgar Publishing.
    19. Wähling, Lara-Sophie & Fridahl, Mathias & Heimann, Tobias & Merk, Christine, 2023. "The sequence matters: Expert opinions on policy mechanisms for bioenergy with carbon capture and storage," Open Access Publications from Kiel Institute for the World Economy 275739, Kiel Institute for the World Economy (IfW Kiel).
    20. Chen Zhao & Jiaxuan Zhu & Zhiyao Xu & Yixuan Wang & Bin Liu & Lu Yuan & Xiaowen Wang & Jiali Xiong & Yiming Zhao, 2022. "The Effect of Air Pollution Control Auditing on Reducing Carbon Emissions: Evidence from China," IJERPH, MDPI, vol. 19(24), pages 1-15, December.
    21. Chien, FengSheng & Chau, Ka Yin & Sadiq, Muhammad, 2023. "Impact of climate mitigation technology and natural resource management on climate change in China," Resources Policy, Elsevier, vol. 81(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Roger Fouquet (ed.), 2013. "Handbook on Energy and Climate Change," Books, Edward Elgar Publishing, number 14429.
    2. Court, Victor & Fizaine, Florian, 2017. "Long-Term Estimates of the Energy-Return-on-Investment (EROI) of Coal, Oil, and Gas Global Productions," Ecological Economics, Elsevier, vol. 138(C), pages 145-159.
    3. Ossenbrink, Jan & Finnsson, Sveinbjoern & Bening, Catharina R. & Hoffmann, Volker H., 2019. "Delineating policy mixes: Contrasting top-down and bottom-up approaches to the case of energy-storage policy in California," Research Policy, Elsevier, vol. 48(10).
    4. Emmanuel Bovari & Victor Court, 2019. "Energy, knowledge, and demo-economic development in the long run: a unified growth model," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) hal-01698755, HAL.
    5. Sam Fankhauser & Frank Jotzo, 2017. "Economic growth and development with low-carbon energy," CCEP Working Papers 1705, Centre for Climate & Energy Policy, Crawford School of Public Policy, The Australian National University.
    6. Gregory Casey, 2024. "Energy Efficiency and Directed Technical Change: Implications for Climate Change Mitigation," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 91(1), pages 192-228.
    7. Roger Fouquet, 2013. "Low-carbon economy: dark age or golden age?," Chapters, in: Roger Fouquet (ed.), Handbook on Energy and Climate Change, chapter 32, pages 682-708, Edward Elgar Publishing.
    8. Tilmann Rave, 2013. "Innovationsindikatoren zum globalen Klimaschutz – FuE-Ausgaben und Patente," ifo Schnelldienst, ifo Institute - Leibniz Institute for Economic Research at the University of Munich, vol. 66(15), pages 34-41, August.
    9. Daniel Moran & Richard Wood, 2014. "Convergence Between The Eora, Wiod, Exiobase, And Openeu'S Consumption-Based Carbon Accounts," Economic Systems Research, Taylor & Francis Journals, vol. 26(3), pages 245-261, September.
    10. Lykke E. Andersen & Luis Carlos Jemio, 2016. "Decentralization and poverty reduction in Bolivia: Challenges and opportunities," Development Research Working Paper Series 01/2016, Institute for Advanced Development Studies.
    11. Inglesi-Lotz, Roula, 2017. "Social rate of return to R&D on various energy technologies: Where should we invest more? A study of G7 countries," Energy Policy, Elsevier, vol. 101(C), pages 521-525.
    12. Tom Mikunda & Tom Kober & Heleen de Coninck & Morgan Bazilian & Hilke R�sler & Bob van der Zwaan, 2014. "Designing policy for deployment of CCS in industry," Climate Policy, Taylor & Francis Journals, vol. 14(5), pages 665-676, September.
    13. Jun Nakatani & Tamon Maruyama & Kosuke Fukuchi & Yuichi Moriguchi, 2015. "A Practical Approach to Screening Potential Environmental Hotspots of Different Impact Categories in Supply Chains," Sustainability, MDPI, vol. 7(9), pages 1-15, August.
    14. Fichter, Tobias & Soria, Rafael & Szklo, Alexandre & Schaeffer, Roberto & Lucena, Andre F.P., 2017. "Assessing the potential role of concentrated solar power (CSP) for the northeast power system of Brazil using a detailed power system model," Energy, Elsevier, vol. 121(C), pages 695-715.
    15. Selosse, Sandrine & Ricci, Olivia & Maïzi, Nadia, 2013. "Fukushima's impact on the European power sector: The key role of CCS technologies," Energy Economics, Elsevier, vol. 39(C), pages 305-312.
    16. Kamjoo, Azadeh & Maheri, Alireza & Putrus, Ghanim A., 2014. "Chance constrained programming using non-Gaussian joint distribution function in design of standalone hybrid renewable energy systems," Energy, Elsevier, vol. 66(C), pages 677-688.
    17. Mokri, Alaeddine & Aal Ali, Mona & Emziane, Mahieddine, 2013. "Solar energy in the United Arab Emirates: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 28(C), pages 340-375.
    18. Perrihan Al-Riffai & Julian Blohmke & Clemens Breisinger & Manfred Wiebelt, 2015. "Harnessing the Sun and Wind for Economic Development? An Economy-Wide Assessment for Egypt," Sustainability, MDPI, vol. 7(6), pages 1-27, June.
    19. Kim, Yeong Jae & Wilson, Charlie, 2019. "Analysing energy innovation portfolios from a systemic perspective," Energy Policy, Elsevier, vol. 134(C).
    20. Sofia Dahlgren & Jonas Ammenberg, 2021. "Sustainability Assessment of Public Transport, Part II—Applying a Multi-Criteria Assessment Method to Compare Different Bus Technologies," Sustainability, MDPI, vol. 13(3), pages 1-30, January.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:tcpoxx:v:15:y:2015:i:sup1:p:s7-s39. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/tcpo20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.