Nothing Special   »   [go: up one dir, main page]

IDEAS home Printed from https://ideas.repec.org/a/taf/jnlbes/v37y2019i1p27-39.html
   My bibliography  Save this article

Adaptive Shrinkage in Bayesian Vector Autoregressive Models

Author

Listed:
  • Florian Huber
  • Martin Feldkircher
Abstract
Vector autoregressive (VAR) models are frequently used for forecasting and impulse response analysis. For both applications, shrinkage priors can help improving inference. In this article, we apply the Normal-Gamma shrinkage prior to the VAR with stochastic volatility case and derive its relevant conditional posterior distributions. This framework imposes a set of normally distributed priors on the autoregressive coefficients and the covariance parameters of the VAR along with Gamma priors on a set of local and global prior scaling parameters. In a second step, we modify this prior setup by introducing another layer of shrinkage with scaling parameters that push certain regions of the parameter space to zero. Two simulation exercises show that the proposed framework yields more precise estimates of model parameters and impulse response functions. In addition, a forecasting exercise applied to U.S. data shows that this prior performs well relative to other commonly used specifications in terms of point and density predictions. Finally, performing structural inference suggests that responses to monetary policy shocks appear to be reasonable.

Suggested Citation

  • Florian Huber & Martin Feldkircher, 2019. "Adaptive Shrinkage in Bayesian Vector Autoregressive Models," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 37(1), pages 27-39, January.
  • Handle: RePEc:taf:jnlbes:v:37:y:2019:i:1:p:27-39
    DOI: 10.1080/07350015.2016.1256217
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/07350015.2016.1256217
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/07350015.2016.1256217?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    More about this item

    JEL classification:

    • C11 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Bayesian Analysis: General
    • C30 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - General
    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
    • E52 - Macroeconomics and Monetary Economics - - Monetary Policy, Central Banking, and the Supply of Money and Credit - - - Monetary Policy

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:jnlbes:v:37:y:2019:i:1:p:27-39. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/UBES20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.