Nothing Special   »   [go: up one dir, main page]

IDEAS home Printed from https://ideas.repec.org/a/taf/applec/v50y2018i55p5950-5965.html
   My bibliography  Save this article

Some stylized facts of the cryptocurrency market

Author

Listed:
  • Wei Zhang
  • Pengfei Wang
  • Xiao Li
  • Dehua Shen
Abstract
We examine the stylized facts of eight forms of cryptocurrencies representing almost 70% of cryptocurrency market capitalization. In particular, the empirical results show that (1) there exists heavy tails for all the returns of cryptocurrencies; (2) the autocorrelations for returns decay quickly, while the autocorrelations for absolute returns decay slowly; (3) returns of cryptocurrencies display strong volatility clustering and leverage effects; (4) Hurst exponent for volatility is more volatile than that of the returns, while they all suggest the long-range dependence phenomena; and (5) there exists power-law correlation between price and volume.

Suggested Citation

  • Wei Zhang & Pengfei Wang & Xiao Li & Dehua Shen, 2018. "Some stylized facts of the cryptocurrency market," Applied Economics, Taylor & Francis Journals, vol. 50(55), pages 5950-5965, November.
  • Handle: RePEc:taf:applec:v:50:y:2018:i:55:p:5950-5965
    DOI: 10.1080/00036846.2018.1488076
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/00036846.2018.1488076
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/00036846.2018.1488076?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Śmiech, Sławomir & Papież, Monika, 2017. "In search of hedges and safe havens: Revisiting the relations between gold and oil in the rolling regression framework," Finance Research Letters, Elsevier, vol. 20(C), pages 238-244.
    2. Noemi Schmitt & Frank Westerhoff, 2017. "Heterogeneity, spontaneous coordination and extreme events within large-scale and small-scale agent-based financial market models," Journal of Evolutionary Economics, Springer, vol. 27(5), pages 1041-1070, November.
    3. Pavel Ciaian & Miroslava Rajcaniova & d’Artis Kancs, 2016. "The economics of BitCoin price formation," Applied Economics, Taylor & Francis Journals, vol. 48(19), pages 1799-1815, April.
    4. He, Ling-Yun & Qian, Wen-Bin, 2012. "A Monte Carlo simulation to the performance of the R/S and V/S methods—Statistical revisit and real world application," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(14), pages 3770-3782.
    5. Ling-Yun He, 2010. "Is Price Behavior Scaling and Multiscaling in a Dealer Market? Perspectives from Multi-Agent Based Experiments," Computational Economics, Springer;Society for Computational Economics, vol. 36(3), pages 263-282, October.
    6. Urquhart, Andrew, 2017. "Price clustering in Bitcoin," Economics Letters, Elsevier, vol. 159(C), pages 145-148.
    7. Tiwari, Aviral Kumar & Jana, R.K. & Das, Debojyoti & Roubaud, David, 2018. "Informational efficiency of Bitcoin—An extension," Economics Letters, Elsevier, vol. 163(C), pages 106-109.
    8. He, Ling-Yun & Chen, Shu-Peng, 2011. "A new approach to quantify power-law cross-correlation and its application to commodity markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(21), pages 3806-3814.
    9. Corbet, Shaen & Lucey, Brian & Yarovaya, Larisa, 2018. "Datestamping the Bitcoin and Ethereum bubbles," Finance Research Letters, Elsevier, vol. 26(C), pages 81-88.
    10. Alvarez-Ramirez, J. & Rodriguez, E. & Ibarra-Valdez, C., 2018. "Long-range correlations and asymmetry in the Bitcoin market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 492(C), pages 948-955.
    11. Bouri, Elie & Gupta, Rangan & Tiwari, Aviral Kumar & Roubaud, David, 2017. "Does Bitcoin hedge global uncertainty? Evidence from wavelet-based quantile-in-quantile regressions," Finance Research Letters, Elsevier, vol. 23(C), pages 87-95.
    12. Lahmiri, Salim & Bekiros, Stelios & Salvi, Antonio, 2018. "Long-range memory, distributional variation and randomness of bitcoin volatility," Chaos, Solitons & Fractals, Elsevier, vol. 107(C), pages 43-48.
    13. Glosten, Lawrence R & Jagannathan, Ravi & Runkle, David E, 1993. "On the Relation between the Expected Value and the Volatility of the Nominal Excess Return on Stocks," Journal of Finance, American Finance Association, vol. 48(5), pages 1779-1801, December.
    14. Ling-Yun He & Sheng Yang & Wen-Si Xie & Zhi-Hong Han, 2014. "Contemporaneous and Asymmetric Properties in the Price-Volume Relationships in China's Agricultural Futures Markets," Emerging Markets Finance and Trade, Taylor & Francis Journals, vol. 50(1S), pages 148-166, January.
    15. Bollerslev, Tim, 1986. "Generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 31(3), pages 307-327, April.
    16. Urquhart, Andrew, 2016. "The inefficiency of Bitcoin," Economics Letters, Elsevier, vol. 148(C), pages 80-82.
    17. Bariviera, Aurelio F., 2017. "The inefficiency of Bitcoin revisited: A dynamic approach," Economics Letters, Elsevier, vol. 161(C), pages 1-4.
    18. Frank Westerhoff & Reiner Franke, 2012. "Converse trading strategies, intrinsic noise and the stylized facts of financial markets," Quantitative Finance, Taylor & Francis Journals, vol. 12(3), pages 425-436, June.
    19. Blau, Benjamin M., 2018. "Price dynamics and speculative trading in Bitcoin," Research in International Business and Finance, Elsevier, vol. 43(C), pages 15-21.
    20. Fahad Almudhaf, 2018. "Pricing efficiency of Bitcoin Trusts," Applied Economics Letters, Taylor & Francis Journals, vol. 25(7), pages 504-508, April.
    21. Bouri, Elie & Molnár, Peter & Azzi, Georges & Roubaud, David & Hagfors, Lars Ivar, 2017. "On the hedge and safe haven properties of Bitcoin: Is it really more than a diversifier?," Finance Research Letters, Elsevier, vol. 20(C), pages 192-198.
    22. Shu-Peng Chen & Ling-Yun He, 2013. "Bubble Formation and Heterogeneity of Traders: A Multi-Agent Perspective," Computational Economics, Springer;Society for Computational Economics, vol. 42(3), pages 267-289, October.
    23. Bariviera, Aurelio F. & Basgall, María José & Hasperué, Waldo & Naiouf, Marcelo, 2017. "Some stylized facts of the Bitcoin market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 484(C), pages 82-90.
    24. Balcilar, Mehmet & Bouri, Elie & Gupta, Rangan & Roubaud, David, 2017. "Can volume predict Bitcoin returns and volatility? A quantiles-based approach," Economic Modelling, Elsevier, vol. 64(C), pages 74-81.
    25. Nadarajah, Saralees & Chu, Jeffrey, 2017. "On the inefficiency of Bitcoin," Economics Letters, Elsevier, vol. 150(C), pages 6-9.
    26. Hendrickson, Joshua R. & Luther, William J., 2017. "Banning bitcoin," Journal of Economic Behavior & Organization, Elsevier, vol. 141(C), pages 188-195.
    27. Wenjun Feng & Yiming Wang & Zhengjun Zhang, 2018. "Can cryptocurrencies be a safe haven: a tail risk perspective analysis," Applied Economics, Taylor & Francis Journals, vol. 50(44), pages 4745-4762, September.
    28. Aaron Yelowitz & Matthew Wilson, 2015. "Characteristics of Bitcoin users: an analysis of Google search data," Applied Economics Letters, Taylor & Francis Journals, vol. 22(13), pages 1030-1036, September.
    29. Lahmiri, Salim & Bekiros, Stelios, 2018. "Chaos, randomness and multi-fractality in Bitcoin market," Chaos, Solitons & Fractals, Elsevier, vol. 106(C), pages 28-34.
    30. Noemi Schmitt & Frank Westerhoff, 2017. "Herding behaviour and volatility clustering in financial markets," Quantitative Finance, Taylor & Francis Journals, vol. 17(8), pages 1187-1203, August.
    31. Baur, Dirk G. & Dimpfl, Thomas & Kuck, Konstantin, 2018. "Bitcoin, gold and the US dollar – A replication and extension," Finance Research Letters, Elsevier, vol. 25(C), pages 103-110.
    32. Katsiampa, Paraskevi, 2017. "Volatility estimation for Bitcoin: A comparison of GARCH models," Economics Letters, Elsevier, vol. 158(C), pages 3-6.
    33. María José Rodríguez & Esther Ruiz, 2012. "Revisiting Several Popular GARCH Models with Leverage Effect: Differences and Similarities," Journal of Financial Econometrics, Oxford University Press, vol. 10(4), pages 637-668, September.
    34. R. Cont, 2001. "Empirical properties of asset returns: stylized facts and statistical issues," Quantitative Finance, Taylor & Francis Journals, vol. 1(2), pages 223-236.
    35. Adrian (Wai-Kong) Cheung & Eduardo Roca & Jen-Je Su, 2015. "Crypto-currency bubbles: an application of the Phillips-Shi-Yu (2013) methodology on Mt. Gox bitcoin prices," Applied Economics, Taylor & Francis Journals, vol. 47(23), pages 2348-2358, May.
    36. Franke, Reiner & Westerhoff, Frank, 2012. "Structural stochastic volatility in asset pricing dynamics: Estimation and model contest," Journal of Economic Dynamics and Control, Elsevier, vol. 36(8), pages 1193-1211.
    37. C. Baek & M. Elbeck, 2015. "Bitcoins as an investment or speculative vehicle? A first look," Applied Economics Letters, Taylor & Francis Journals, vol. 22(1), pages 30-34, January.
    38. Dyhrberg, Anne Haubo, 2016. "Hedging capabilities of bitcoin. Is it the virtual gold?," Finance Research Letters, Elsevier, vol. 16(C), pages 139-144.
    39. Baur, Dirk G. & Hong, KiHoon & Lee, Adrian D., 2018. "Bitcoin: Medium of exchange or speculative assets?," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 54(C), pages 177-189.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Andrea Flori, 2019. "Cryptocurrencies In Finance: Review And Applications," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 22(05), pages 1-22, August.
    2. Corbet, Shaen & Lucey, Brian & Urquhart, Andrew & Yarovaya, Larisa, 2019. "Cryptocurrencies as a financial asset: A systematic analysis," International Review of Financial Analysis, Elsevier, vol. 62(C), pages 182-199.
    3. Flori, Andrea, 2019. "News and subjective beliefs: A Bayesian approach to Bitcoin investments," Research in International Business and Finance, Elsevier, vol. 50(C), pages 336-356.
    4. Aurelio F. Bariviera & Ignasi Merediz‐Solà, 2021. "Where Do We Stand In Cryptocurrencies Economic Research? A Survey Based On Hybrid Analysis," Journal of Economic Surveys, Wiley Blackwell, vol. 35(2), pages 377-407, April.
    5. ORĂȘTEAN Ramona & MĂRGINEAN Silvia Cristina & SAVA Raluca, 2019. "Bitcoin In The Scientific Literature – A Bibliometric Study," Studies in Business and Economics, Lucian Blaga University of Sibiu, Faculty of Economic Sciences, vol. 14(3), pages 160-174, December.
    6. Parthajit Kayal & G. Balasubramanian, 2021. "Excess Volatility in Bitcoin: Extreme Value Volatility Estimation," IIM Kozhikode Society & Management Review, , vol. 10(2), pages 222-231, July.
    7. Panagiotidis, Theodore & Stengos, Thanasis & Vravosinos, Orestis, 2019. "The effects of markets, uncertainty and search intensity on bitcoin returns," International Review of Financial Analysis, Elsevier, vol. 63(C), pages 220-242.
    8. Nikolaos A. Kyriazis, 2019. "A Survey on Efficiency and Profitable Trading Opportunities in Cryptocurrency Markets," JRFM, MDPI, vol. 12(2), pages 1-17, April.
    9. Bedi, Prateek & Nashier, Tripti, 2020. "On the investment credentials of Bitcoin: A cross-currency perspective," Research in International Business and Finance, Elsevier, vol. 51(C).
    10. Zhang, Wei & Wang, Pengfei & Li, Xiao & Shen, Dehua, 2018. "The inefficiency of cryptocurrency and its cross-correlation with Dow Jones Industrial Average," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 510(C), pages 658-670.
    11. Cynthia Weiyi Cai & Rui Xue & Bi Zhou, 2023. "Cryptocurrency puzzles: a comprehensive review and re-introduction," Journal of Accounting Literature, Emerald Group Publishing Limited, vol. 46(1), pages 26-50, June.
    12. Katsiampa, Paraskevi, 2019. "An empirical investigation of volatility dynamics in the cryptocurrency market," Research in International Business and Finance, Elsevier, vol. 50(C), pages 322-335.
    13. Lennart Ante, 2020. "A place next to Satoshi: foundations of blockchain and cryptocurrency research in business and economics," Scientometrics, Springer;Akadémiai Kiadó, vol. 124(2), pages 1305-1333, August.
    14. Köchling, Gerrit & Müller, Janis & Posch, Peter N., 2019. "Does the introduction of futures improve the efficiency of Bitcoin?," Finance Research Letters, Elsevier, vol. 30(C), pages 367-370.
    15. Troster, Victor & Tiwari, Aviral Kumar & Shahbaz, Muhammad & Macedo, Demian Nicolás, 2019. "Bitcoin returns and risk: A general GARCH and GAS analysis," Finance Research Letters, Elsevier, vol. 30(C), pages 187-193.
    16. Narayan, Paresh Kumar & Narayan, Seema & Eki Rahman, R. & Setiawan, Iwan, 2019. "Bitcoin price growth and Indonesia's monetary system," Emerging Markets Review, Elsevier, vol. 38(C), pages 364-376.
    17. Li, Xiao & Wu, Ruoxi & Wang, Chen, 2024. "Impacts of bitcoin on monetary system: Is China's bitcoin ban necessary?," Research in International Business and Finance, Elsevier, vol. 69(C).
    18. Parthajit Kayal & Purnima Rohilla, 2021. "Bitcoin in the economics and finance literature: a survey," SN Business & Economics, Springer, vol. 1(7), pages 1-21, July.
    19. Ángeles Cebrián-Hernández & Enrique Jiménez-Rodríguez, 2021. "Modeling of the Bitcoin Volatility through Key Financial Environment Variables: An Application of Conditional Correlation MGARCH Models," Mathematics, MDPI, vol. 9(3), pages 1-16, January.
    20. Haffar, Adlane & Le Fur, Eric, 2021. "Structural vector error correction modelling of Bitcoin price," The Quarterly Review of Economics and Finance, Elsevier, vol. 80(C), pages 170-178.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:applec:v:50:y:2018:i:55:p:5950-5965. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/RAEC20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.