Nothing Special   »   [go: up one dir, main page]

IDEAS home Printed from https://ideas.repec.org/p/ube/dpvwib/dp1607.html
   My bibliography  Save this paper

Generic Inference on Quantile and Quantile Effect Functions for Discrete Outcomes

Author

Listed:
  • Victor Chernozhukov
  • Ivan Fernandez-Val
  • Blaise Melly
  • Kaspar W thrich
Abstract
This paper provides a method to construct simultaneous confidence bands for quantile and quantile effect functions for possibly discrete or mixed discrete-continuous random variables. The construction is generic and does not depend on the nature of the underlying problem. It works in conjunction with parametric, semiparametric, and nonparametric modeling strategies and does not depend on the sampling schemes. It is based upon projection of simultaneous confidence bands for distribution functions. We apply our method to analyze the distributional impact of insurance coverage on health care utilization and to provide a distributional decomposition of the racial test score gap. Our analysis generates new interesting findings, and complements previous analyses that focused on mean effects only. In both applications, the outcomes of interest are discrete rendering standard inference methods invalid for obtaining uniform confidence bands for quantile and quantile effects functions.

Suggested Citation

  • Victor Chernozhukov & Ivan Fernandez-Val & Blaise Melly & Kaspar W thrich, 2016. "Generic Inference on Quantile and Quantile Effect Functions for Discrete Outcomes," Diskussionsschriften dp1607, Universitaet Bern, Departement Volkswirtschaft.
  • Handle: RePEc:ube:dpvwib:dp1607
    as

    Download full text from publisher

    File URL: https://repec.vwiit.ch/dp/dp1607.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Frandsen, Brigham R. & Frölich, Markus & Melly, Blaise, 2012. "Quantile treatment effects in the regression discontinuity design," Journal of Econometrics, Elsevier, vol. 168(2), pages 382-395.
    2. V. Chernozhukov & I. Fernández-Val & A. Galichon, 2009. "Improving point and interval estimators of monotone functions by rearrangement," Biometrika, Biometrika Trust, vol. 96(3), pages 559-575.
    3. Guido W. Imbens & Whitney K. Newey, 2009. "Identification and Estimation of Triangular Simultaneous Equations Models Without Additivity," Econometrica, Econometric Society, vol. 77(5), pages 1481-1512, September.
    4. Christoph Rothe & Dominik Wied, 2013. "Misspecification Testing in a Class of Conditional Distributional Models," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 108(501), pages 314-324, March.
    5. Larocque, Denis & Randles, Ronald H., 2008. "Confidence Intervals for a Discrete Population Median," The American Statistician, American Statistical Association, vol. 62, pages 32-39, February.
    6. Cheng, Guang & Yu, Zhuqing & Huang, Jianhua Z., 2013. "The cluster bootstrap consistency in generalized estimating equations," Journal of Multivariate Analysis, Elsevier, vol. 115(C), pages 33-47.
    7. Amy Finkelstein & Sarah Taubman & Bill Wright & Mira Bernstein & Jonathan Gruber & Joseph P. Newhouse & Heidi Allen & Katherine Baicker, 2012. "The Oregon Health Insurance Experiment: Evidence from the First Year," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 127(3), pages 1057-1106.
    8. Junni L. Zhang & Donald B. Rubin, 2003. "Estimation of Causal Effects via Principal Stratification When Some Outcomes are Truncated by “Deathâ€," Journal of Educational and Behavioral Statistics, , vol. 28(4), pages 353-368, December.
    9. Donald, Stephen G. & Hsu, Yu-Chin, 2014. "Estimation and inference for distribution functions and quantile functions in treatment effect models," Journal of Econometrics, Elsevier, vol. 178(P3), pages 383-397.
    10. Roland G. Fryer & Steven D. Levitt, 2013. "Testing for Racial Differences in the Mental Ability of Young Children," American Economic Review, American Economic Association, vol. 103(2), pages 981-1005, April.
    11. Belloni, Alexandre & Chernozhukov, Victor & Chetverikov, Denis & Fernández-Val, Iván, 2019. "Conditional quantile processes based on series or many regressors," Journal of Econometrics, Elsevier, vol. 213(1), pages 4-29.
    12. Joshua Angrist & Eric Bettinger & Michael Kremer, 2006. "Long-Term Educational Consequences of Secondary School Vouchers: Evidence from Administrative Records in Colombia," American Economic Review, American Economic Association, vol. 96(3), pages 847-862, June.
    13. Qu, Zhongjun & Yoon, Jungmo, 2015. "Nonparametric estimation and inference on conditional quantile processes," Journal of Econometrics, Elsevier, vol. 185(1), pages 1-19.
    14. Yu-Chin Hsu & Robert P. Lieli & Tsung-Chih Lai, 2015. "Estimation and Inference for Distribution Functions and Quantile Functions in Endogenous Treatment Effect Models," IEAS Working Paper : academic research 15-A003, Institute of Economics, Academia Sinica, Taipei, Taiwan.
    15. Winkelmann, Rainer, 2006. "Reforming health care: Evidence from quantile regressions for counts," Journal of Health Economics, Elsevier, vol. 25(1), pages 131-145, January.
    16. Machado, Jose A.F. & Silva, J. M. C. Santos, 2005. "Quantiles for Counts," Journal of the American Statistical Association, American Statistical Association, vol. 100, pages 1226-1237, December.
    17. Foresi, S. & Paracchi, F., 1992. "The Conditional Distribution of Excess Returns: An Empirical Analysis," Working Papers 92-49, C.V. Starr Center for Applied Economics, New York University.
    18. Koenker, Roger W & Bassett, Gilbert, Jr, 1978. "Regression Quantiles," Econometrica, Econometric Society, vol. 46(1), pages 33-50, January.
    19. V. Chernozhukov & I. Fernández-Val & A. Galichon, 2009. "Improving point and interval estimators of monotone functions by rearrangement," Biometrika, Biometrika Trust, vol. 96(3), pages 559-575.
    20. Joshua Angrist & Victor Chernozhukov & Iván Fernández-Val, 2006. "Quantile Regression under Misspecification, with an Application to the U.S. Wage Structure," Econometrica, Econometric Society, vol. 74(2), pages 539-563, March.
    21. Roger Koenker & Zhijie Xiao, 2002. "Inference on the Quantile Regression Process," Econometrica, Econometric Society, vol. 70(4), pages 1583-1612, July.
    22. Katherine Baicker & Amy Finkelstein & Jae Song & Sarah Taubman, 2014. "The Impact of Medicaid on Labor Market Activity and Program Participation: Evidence from the Oregon Health Insurance Experiment," American Economic Review, American Economic Association, vol. 104(5), pages 322-328, May.
    23. Yanyuan Ma & Marc Genton & Emanuel Parzen, 2011. "Asymptotic properties of sample quantiles of discrete distributions," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 63(2), pages 227-243, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chernozhukov, Victor & Fernández-Val, Iván & Weidner, Martin, 2024. "Network and panel quantile effects via distribution regression," Journal of Econometrics, Elsevier, vol. 240(2).
    2. Ferdi Botha & John P. de New & Sonja C. de New & David C. Ribar & Nicolás Salamanca, 2020. "COVID-19 labour market shocks and their inequality implications for financial wellbeing," Melbourne Institute Working Paper Series wp2020n15, Melbourne Institute of Applied Economic and Social Research, The University of Melbourne.
    3. Victor Chernozhukov & Iván Fernández‐Val & Whitney Newey & Sami Stouli & Francis Vella, 2020. "Semiparametric estimation of structural functions in nonseparable triangular models," Quantitative Economics, Econometric Society, vol. 11(2), pages 503-533, May.
    4. Victor Chernozhukov & Kaspar Wuthrich & Yinchu Zhu, 2019. "Distributional conformal prediction," Papers 1909.07889, arXiv.org, revised Aug 2021.
    5. Kaspar Wuthrich & Ying Zhu, 2019. "Omitted variable bias of Lasso-based inference methods: A finite sample analysis," Papers 1903.08704, arXiv.org, revised Sep 2021.
    6. Victor Chernozhukov & Iv'an Fern'andez-Val & Siyi Luo, 2018. "Distribution Regression with Sample Selection, with an Application to Wage Decompositions in the UK," Papers 1811.11603, arXiv.org, revised Dec 2023.
    7. Pedro H. C. Sant'Anna & Xiaojun Song & Qi Xu, 2022. "Covariate distribution balance via propensity scores," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 37(6), pages 1093-1120, September.
    8. Ferdi Botha & John P. de New, 2020. "COVID-19 infections, labour market shocks, and subjective well-being," Melbourne Institute Working Paper Series wp2020n14, Melbourne Institute of Applied Economic and Social Research, The University of Melbourne.
    9. Victor Chernozhukov & Ivan Fernandez-Val & Siyi Luo, 2023. "Distribution regression with sample selection and UK wage decomposition," CeMMAP working papers 09/23, Institute for Fiscal Studies.
    10. Valentina Corradi & Daniel Gutknecht, 2019. "Testing for Quantile Sample Selection," Papers 1907.07412, arXiv.org, revised Jan 2021.
    11. Tatsushi Oka & Shota Yasui & Yuta Hayakawa & Undral Byambadalai, 2024. "Regression Adjustment for Estimating Distributional Treatment Effects in Randomized Controlled Trials," Papers 2407.14074, arXiv.org.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Victor Chernozhukov & Iván Fernández‐Val & Blaise Melly, 2013. "Inference on Counterfactual Distributions," Econometrica, Econometric Society, vol. 81(6), pages 2205-2268, November.
    2. Belloni, Alexandre & Chernozhukov, Victor & Chetverikov, Denis & Fernández-Val, Iván, 2019. "Conditional quantile processes based on series or many regressors," Journal of Econometrics, Elsevier, vol. 213(1), pages 4-29.
    3. Ferreira, Francisco H. G. & Firpo, Sergio & Galvao, Antonio F., 2017. "Estimation and Inference for Actual and Counterfactual Growth Incidence Curves," IZA Discussion Papers 10473, Institute of Labor Economics (IZA).
    4. Roger Koenker & Samantha Leorato & Franco Peracchi, 2013. "Distributional vs. Quantile Regression," EIEF Working Papers Series 1329, Einaudi Institute for Economics and Finance (EIEF), revised Dec 2013.
    5. Wüthrich, Kaspar, 2019. "A closed-form estimator for quantile treatment effects with endogeneity," Journal of Econometrics, Elsevier, vol. 210(2), pages 219-235.
    6. Pereda-Fernández, Santiago, 2023. "Identification and estimation of triangular models with a binary treatment," Journal of Econometrics, Elsevier, vol. 234(2), pages 585-623.
    7. Graham, Bryan S. & Hahn, Jinyong & Poirier, Alexandre & Powell, James L., 2018. "A quantile correlated random coefficients panel data model," Journal of Econometrics, Elsevier, vol. 206(2), pages 305-335.
    8. Kaspar W thrich, 2015. "Semiparametric estimation of quantile treatment effects with endogeneity," Diskussionsschriften dp1509, Universitaet Bern, Departement Volkswirtschaft.
    9. Kneib, Thomas & Silbersdorff, Alexander & Säfken, Benjamin, 2023. "Rage Against the Mean – A Review of Distributional Regression Approaches," Econometrics and Statistics, Elsevier, vol. 26(C), pages 99-123.
    10. Yunyun Wang & Tatsushi Oka & Dan Zhu, 2023. "Distributional Vector Autoregression: Eliciting Macro and Financial Dependence," Papers 2303.04994, arXiv.org.
    11. Samantha Leorato & Franco Peracchi, 2015. "Shape Regressions," EIEF Working Papers Series 1506, Einaudi Institute for Economics and Finance (EIEF), revised Jul 2015.
    12. Gimenes, Nathalie & Guerre, Emmanuel, 2022. "Quantile regression methods for first-price auctions," Journal of Econometrics, Elsevier, vol. 226(2), pages 224-247.
    13. Hao, Meiling & Lin, Yuanyuan & Shen, Guohao & Su, Wen, 2023. "Nonparametric inference on smoothed quantile regression process," Computational Statistics & Data Analysis, Elsevier, vol. 179(C).
    14. Arie Beresteanu, 2016. "Quantile Regression with Interval Data," Working Paper 5991, Department of Economics, University of Pittsburgh.
    15. Jun, Sung Jae, 2009. "Local structural quantile effects in a model with a nonseparable control variable," Journal of Econometrics, Elsevier, vol. 151(1), pages 82-97, July.
    16. Grigory Franguridi & Bulat Gafarov & Kaspar Wüthrich, 2021. "Conditional Quantile Estimators: A Small Sample Theory," CESifo Working Paper Series 9046, CESifo.
    17. Qu, Zhongjun & Yoon, Jungmo, 2015. "Nonparametric estimation and inference on conditional quantile processes," Journal of Econometrics, Elsevier, vol. 185(1), pages 1-19.
    18. Paul Hewson & Keming Yu, 2008. "Quantile regression for binary performance indicators," Applied Stochastic Models in Business and Industry, John Wiley & Sons, vol. 24(5), pages 401-418, September.
    19. Kato, Kengo & F. Galvao, Antonio & Montes-Rojas, Gabriel V., 2012. "Asymptotics for panel quantile regression models with individual effects," Journal of Econometrics, Elsevier, vol. 170(1), pages 76-91.
    20. Chernozhukov, Victor & Fernández-Val, Iván & Hoderlein, Stefan & Holzmann, Hajo & Newey, Whitney, 2015. "Nonparametric identification in panels using quantiles," Journal of Econometrics, Elsevier, vol. 188(2), pages 378-392.

    More about this item

    Keywords

    quantiles; quantile effects; treatment effects; distribution; discrete; mixed; count data; confidence bands; uniform inference.;
    All these keywords.

    JEL classification:

    • C12 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Hypothesis Testing: General
    • C21 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Cross-Sectional Models; Spatial Models; Treatment Effect Models
    • C25 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Discrete Regression and Qualitative Choice Models; Discrete Regressors; Proportions; Probabilities

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ube:dpvwib:dp1607. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Franz Koelliker (email available below). General contact details of provider: https://edirc.repec.org/data/vwibech.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.