Nothing Special   »   [go: up one dir, main page]

IDEAS home Printed from https://ideas.repec.org/p/wbk/wbrwps/10013.html
   My bibliography  Save this paper

New Algorithm to Estimate Inequality Measures in Cross-Survey Imputation : An Attemptto Correct the Underestimation of Extreme Values

Author

Listed:
  • Betti,Gianni
  • Molini,Vasco
  • Mori,Lorenzo
Abstract
This paper contributes to the debateon ways to improve the calculation of inequality measures in developing countries experiencing severe budget constraints.Linear regression-based survey-to-survey imputation techniques are most frequently discussed in the literature.These are effective at estimating predictions of poverty indicators but are much less accurate with inequalityindicators. To demonstrate this limited accuracy, the first part of the paper discusses several simulations usingMoroccan Household Budget Surveys and Labor Force Surveys. The paper proposes a method for overcoming these limitationsbased on an algorithm that minimizes the sum of the squared difference between a certain number of direct estimates ofan index and its empirical version obtained from the predicted values. Indeed, when comparing the estimatedresults with those directly estimated from the original sample, the bias is negligible. Furthermore, the inequalityindices for the years for which there are only model estimates, rather than direct information on expenditures,seem to be consistent with Moroccan economic trends.

Suggested Citation

  • Betti,Gianni & Molini,Vasco & Mori,Lorenzo, 2022. "New Algorithm to Estimate Inequality Measures in Cross-Survey Imputation : An Attemptto Correct the Underestimation of Extreme Values," Policy Research Working Paper Series 10013, The World Bank.
  • Handle: RePEc:wbk:wbrwps:10013
    as

    Download full text from publisher

    File URL: http://documents.worldbank.org/curated/en/099833304202232000/pdf/IDU04786da1d0b37c04df60b7ae0f41688c4262c.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Chris Elbers & Peter F. Lanjouw & Johan A. Mistiaen & Berk Özler & Ken Simler, 2004. "On the Unequal Inequality of Poor Communities," The World Bank Economic Review, World Bank, vol. 18(3), pages 401-421.
    2. Gabriel Demombynes & Johannes G. Hoogeveen, 2007. "Growth, Inequality and Simulated Poverty Paths for Tanzania, 1992--2002," Journal of African Economies, Centre for the Study of African Economies, vol. 16(4), pages 596-628, August.
    3. Gianni Betti & Ruzhdie Bici & Laura Neri & Thomas Pave Sohnesen & Ledia Thomo, 2018. "Local Poverty and Inequality in Albania," Eastern European Economics, Taylor & Francis Journals, vol. 56(3), pages 223-245, May.
    4. Luc Christiaensen & Peter Lanjouw & Jill Luoto & David Stifel, 2012. "Small area estimation-based prediction methods to track poverty: validation and applications," The Journal of Economic Inequality, Springer;Society for the Study of Economic Inequality, vol. 10(2), pages 267-297, June.
    5. Corral Rodas,Paul Andres & Kastelic,Kristen Himelein & Mcgee,Kevin Robert & Molina,Isabel, 2021. "A Map of the Poor or a Poor Map ?," Policy Research Working Paper Series 9620, The World Bank.
    6. Alessandro Tarozzi & Angus Deaton, 2009. "Using Census and Survey Data to Estimate Poverty and Inequality for Small Areas," The Review of Economics and Statistics, MIT Press, vol. 91(4), pages 773-792, November.
    7. Jose Cuesta & Gabriel Lara Ibarra, 2017. "Comparing Cross-Survey Micro Imputation and Macro Projection Techniques: Poverty in Post Revolution Tunisia," Journal of Income Distribution, Ad libros publications inc., vol. 25(1), pages 1-30, March.
    8. Caroline Krafft & Ragui Assaad & Hanan Nazier & Racha Ramadan & Atiyeh Vahidmanesh & Sami Zouari, 2019. "Estimating poverty and inequality in the absence of consumption data: an application to the Middle East and North Africa," Middle East Development Journal, Taylor & Francis Journals, vol. 11(1), pages 1-29, January.
    9. Hai‐Anh Dang & Dean Jolliffe & Calogero Carletto, 2019. "Data Gaps, Data Incomparability, And Data Imputation: A Review Of Poverty Measurement Methods For Data‐Scarce Environments," Journal of Economic Surveys, Wiley Blackwell, vol. 33(3), pages 757-797, July.
    10. Kusum W. Ketkar & Suhas L. Ketkar, 1987. "Socio-Demographic Dynamics and Household Demand," Eastern Economic Journal, Eastern Economic Association, vol. 13(1), pages 55-62, Jan-Mar.
    11. Paul Corral & Kristen Himelein & Kevin McGee & Isabel Molina, 2021. "A Map of the Poor or a Poor Map?," Mathematics, MDPI, vol. 9(21), pages 1-40, November.
    12. Chris Elbers & Jean O. Lanjouw & Peter Lanjouw, 2003. "Micro--Level Estimation of Poverty and Inequality," Econometrica, Econometric Society, vol. 71(1), pages 355-364, January.
    13. Christian Schluter, 2012. "On the problem of inference for inequality measures for heavy‐tailed distributions," Econometrics Journal, Royal Economic Society, vol. 15(1), pages 125-153, February.
    14. Ray Chambers & Nikos Tzavidis, 2006. "M-quantile models for small area estimation," Biometrika, Biometrika Trust, vol. 93(2), pages 255-268, June.
    15. Astrid Mathiassen, 2013. "Testing Prediction Performance of Poverty Models: Empirical Evidence from U ganda," Review of Income and Wealth, International Association for Research in Income and Wealth, vol. 59(1), pages 91-112, March.
    16. Mohamed Douidich & Abdeljaouad Ezzrari & Roy Van der Weide & Paolo Verme, 2016. "Estimating Quarterly Poverty Rates Using Labor Force Surveys: A Primer," The World Bank Economic Review, World Bank, vol. 30(3), pages 475-500.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Betti, Gianni & Molini, Vasco & Mori, Lorenzo, 2024. "An attempt to correct the underestimation of inequality measures in cross-survey imputation through generalized additive models for location, scale and shape," Socio-Economic Planning Sciences, Elsevier, vol. 91(C).
    2. Dang,Hai-Anh H. & Kilic,Talip & Carletto,Calogero & Abanokova,Kseniya, 2021. "Poverty Imputation in Contexts without Consumption Data : A Revisit with Further Refinements," Policy Research Working Paper Series 9838, The World Bank.
    3. Dang, Hai-Anh H & Lanjouw, Peter F., 2021. "Data Scarcity and Poverty Measurement," IZA Discussion Papers 14631, Institute of Labor Economics (IZA).
    4. Hai‐Anh H. Dang, 2021. "To impute or not to impute, and how? A review of poverty‐estimation methods in the absence of consumption data," Development Policy Review, Overseas Development Institute, vol. 39(6), pages 1008-1030, November.
    5. Hai-Anh H. Dang & Peter F. Lanjouw & Umar Serajuddin, 2017. "Updating poverty estimates in the absence of regular and comparable consumption data: methods and illustration with reference to a middle-income country," Oxford Economic Papers, Oxford University Press, vol. 69(4), pages 939-962.
    6. Hai-Anh H. Dang & Peter F. Lanjouw, 2023. "Regression-based imputation for poverty measurement in data-scarce settings," Chapters, in: Jacques Silber (ed.), Research Handbook on Measuring Poverty and Deprivation, chapter 13, pages 141-150, Edward Elgar Publishing.
    7. Talip Kilic & Thomas Pave Sohnesen, 2019. "Same Question But Different Answer: Experimental Evidence on Questionnaire Design's Impact on Poverty Measured by Proxies," Review of Income and Wealth, International Association for Research in Income and Wealth, vol. 65(1), pages 144-165, March.
    8. Dang,Hai-Anh H., 2018. "To impute or not to impute ? a review of alternative poverty estimation methods in the context of unavailable consumption data," Policy Research Working Paper Series 8403, The World Bank.
    9. Hai-Anh H. Dang & Paolo Verme, 2023. "Estimating poverty for refugees in data-scarce contexts: an application of cross-survey imputation," Journal of Population Economics, Springer;European Society for Population Economics, vol. 36(2), pages 653-679, April.
    10. Hai‐Anh Dang & Dean Jolliffe & Calogero Carletto, 2019. "Data Gaps, Data Incomparability, And Data Imputation: A Review Of Poverty Measurement Methods For Data‐Scarce Environments," Journal of Economic Surveys, Wiley Blackwell, vol. 33(3), pages 757-797, July.
    11. Cuesta, Jose & Chagalj, Cristian, 2019. "Measuring poverty with administrative data in data deprived contexts: The case of Nicaragua," Economics Letters, Elsevier, vol. 183(C), pages 1-1.
    12. Theresa Beltramo & Hai-Anh Dang & Ibrahima Sarr & Paolo Verme, 2024. "Estimating poverty among refugee populations: a cross-survey imputation exercise for Chad," Oxford Development Studies, Taylor & Francis Journals, vol. 52(1), pages 94-113, January.
    13. Hai-Anh H. Dang & Talip Kilic & Ksenia Abanokova & Gero Carletto, 2024. "Imputing Poverty Indicators without Consumption Data : An Exploratory Analysis," Policy Research Working Paper Series 10867, The World Bank.
    14. Lovaton Davila, Rodrigo & McCarthy, Aine Seitz & Gondwe, Dorothy & Kirdruang, Phatta & Sharma, Uttam, 2022. "Water, walls, and bicycles: wealth index composition using census microdata," Journal of Demographic Economics, Cambridge University Press, vol. 88(1), pages 79-120, March.
    15. Hai-Anh H. Dang & Peter F. Lanjouw, 2018. "Poverty Dynamics in India between 2004 and 2012: Insights from Longitudinal Analysis Using Synthetic Panel Data," Economic Development and Cultural Change, University of Chicago Press, vol. 67(1), pages 131-170.
    16. Atamanov, Aziz & Tandon, Sharad & Lopez-Acevedo, Gladys & Vergara Bahena, Mexico Alberto, 2020. "Measuring Monetary Poverty in the Middle East and North Africa (MENA) Region: Data Gaps and Different Options to Address Them," IZA Discussion Papers 13363, Institute of Labor Economics (IZA).
    17. Newhouse,David Locke & Merfeld,Joshua David & Ramakrishnan,Anusha Pudugramam & Swartz,Tom & Lahiri,Partha, 2022. "Small Area Estimation of Monetary Poverty in Mexico Using Satellite Imagery and Machine Learning," Policy Research Working Paper Series 10175, The World Bank.
    18. Dang,Hai-Anh H. & Verme,Paolo, 2019. "Estimating Poverty for Refugee Populations : Can Cross-Survey Imputation Methods Substitute for Data Scarcity ?," Policy Research Working Paper Series 9076, The World Bank.
    19. Dang, Hai-Anh H & Kilic, Talip & Hlasny, Vladimir & Abanokova, Kseniya & Carletto, Calogero, 2024. "Using Survey-to-Survey Imputation to Fill Poverty Data Gaps at a Low Cost: Evidence from a Randomized Survey Experiment," IZA Discussion Papers 16792, Institute of Labor Economics (IZA).
    20. Niall Farrell, 2024. "Small Area Poverty Estimation by Conditional Monte Carlo," Papers WP773, Economic and Social Research Institute (ESRI).

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wbk:wbrwps:10013. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Roula I. Yazigi (email available below). General contact details of provider: https://edirc.repec.org/data/dvewbus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.