Nothing Special   »   [go: up one dir, main page]

IDEAS home Printed from https://ideas.repec.org/p/pra/mprapa/42645.html
   My bibliography  Save this paper

Analysis on Runs of Daily Returns in Istanbul Stock Exchange

Author

Listed:
  • Şensoy, Ahmet
Abstract
The aim of this paper is to obtain some statistical properties about runs of daily returns of ISE30, ISE50 and ISE100 indices and compare these results with the empirical stylized facts of developed stock markets. In this manner, all time historical daily closing values of these indices are studied and the following observations are obtained; exponential law fits pretty well for the distribution of both run length and magnitude of run returns. Market is equally likely to go up or go down everyday. Market depth has improved over recent years. Large magnitudes of run returns are more likely to be seen in positive runs. As in the developed stock markets, daily returns in Istanbul Stock Exchange don’t have significant autocorrelations but absolute values (i.e. magnitudes) of daily returns exhibit strong and slowly decaying autocorrelations up to several weeks suggesting volatility clustering. Similar to the absolute daily returns, absolute value of run returns display strong and slowly decaying autocorrelations which again supporting the existence of volatility clustering. Unlike magnitudes of run returns, lenghts of runs don’t have significant autocorrelations.

Suggested Citation

  • Şensoy, Ahmet, 2012. "Analysis on Runs of Daily Returns in Istanbul Stock Exchange," MPRA Paper 42645, University Library of Munich, Germany.
  • Handle: RePEc:pra:mprapa:42645
    as

    Download full text from publisher

    File URL: https://mpra.ub.uni-muenchen.de/42645/1/MPRA_paper_42645.pdf
    File Function: original version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Pagan, Adrian, 1996. "The econometrics of financial markets," Journal of Empirical Finance, Elsevier, vol. 3(1), pages 15-102, May.
    2. Rama Cont & Marc Potters & Jean-Philippe Bouchaud, 1997. "Scaling in stock market data: stable laws and beyond," Science & Finance (CFM) working paper archive 9705087, Science & Finance, Capital Fund Management.
    3. Bouchaud,Jean-Philippe & Potters,Marc, 2003. "Theory of Financial Risk and Derivative Pricing," Cambridge Books, Cambridge University Press, number 9780521819169.
    4. Engle, Robert F. (ed.), 1995. "ARCH: Selected Readings," OUP Catalogue, Oxford University Press, number 9780198774327.
    5. R. Cont, 2001. "Empirical properties of asset returns: stylized facts and statistical issues," Quantitative Finance, Taylor & Francis Journals, vol. 1(2), pages 223-236.
    6. Comte, F. & Renault, E., 1996. "Long memory continuous time models," Journal of Econometrics, Elsevier, vol. 73(1), pages 101-149, July.
    7. Rama Cont, 2007. "Volatility Clustering in Financial Markets: Empirical Facts and Agent-Based Models," Springer Books, in: Gilles Teyssière & Alan P. Kirman (ed.), Long Memory in Economics, pages 289-309, Springer.
    8. Benoit Mandelbrot, 2015. "The Variation of Certain Speculative Prices," World Scientific Book Chapters, in: Anastasios G Malliaris & William T Ziemba (ed.), THE WORLD SCIENTIFIC HANDBOOK OF FUTURES MARKETS, chapter 3, pages 39-78, World Scientific Publishing Co. Pte. Ltd..
    9. Easley, David & Kiefer, Nicholas M & O'Hara, Maureen, 1997. "One Day in the Life of a Very Common Stock," The Review of Financial Studies, Society for Financial Studies, vol. 10(3), pages 805-835.
    10. R. F. Engle & A. J. Patton, 2001. "What good is a volatility model?," Quantitative Finance, Taylor & Francis Journals, vol. 1(2), pages 237-245.
    11. Fama, Eugene F, 1991. "Efficient Capital Markets: II," Journal of Finance, American Finance Association, vol. 46(5), pages 1575-1617, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tseng, Jie-Jun & Li, Sai-Ping, 2012. "Quantifying volatility clustering in financial time series," International Review of Financial Analysis, Elsevier, vol. 23(C), pages 11-19.
    2. F. N. M. de Sousa Filho & J. N. Silva & M. A. Bertella & E. Brigatti, 2020. "The leverage effect and other stylized facts displayed by Bitcoin returns," Papers 2004.05870, arXiv.org, revised Jan 2021.
    3. Radu T. Pruna & Maria Polukarov & Nicholas R. Jennings, 2016. "A new structural stochastic volatility model of asset pricing and its stylized facts," Papers 1604.08824, arXiv.org.
    4. Sandrine Jacob Leal & Mauro Napoletano & Andrea Roventini & Giorgio Fagiolo, 2016. "Rock around the clock: An agent-based model of low- and high-frequency trading," Journal of Evolutionary Economics, Springer, vol. 26(1), pages 49-76, March.
    5. Rama Cont & Jean-Philippe Bouchaud, 1997. "Herd behavior and aggregate fluctuations in financial markets," Science & Finance (CFM) working paper archive 500028, Science & Finance, Capital Fund Management.
    6. Danilo Delpini & Giacomo Bormetti, 2012. "Stochastic Volatility with Heterogeneous Time Scales," Papers 1206.0026, arXiv.org, revised Apr 2013.
    7. repec:spo:wpmain:info:hdl:2441/f6h8764enu2lskk9p4oq9ig8k is not listed on IDEAS
    8. Cafferata, Alessia & Tramontana, Fabio, 2022. "Disposition Effect and its outcome on endogenous price fluctuations," MPRA Paper 113904, University Library of Munich, Germany.
    9. Diep, Hung T. & Desgranges, Gabriel, 2021. "Dynamics of the price behavior in stock markets: A statistical physics approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 570(C).
    10. Alessio Emanuele Biondo, 2019. "Order book modeling and financial stability," Journal of Economic Interaction and Coordination, Springer;Society for Economic Science with Heterogeneous Interacting Agents, vol. 14(3), pages 469-489, September.
    11. Luis Goncalves de Faria, 2022. "An Agent-Based Model With Realistic Financial Time Series: A Method for Agent-Based Models Validation," Papers 2206.09772, arXiv.org.
    12. Jovanovic, Franck & Schinckus, Christophe, 2017. "Econophysics and Financial Economics: An Emerging Dialogue," OUP Catalogue, Oxford University Press, number 9780190205034.
    13. Roberto Mota Navarro & Hern'an Larralde Ridaura, 2016. "A detailed heterogeneous agent model for a single asset financial market with trading via an order book," Papers 1601.00229, arXiv.org, revised Jul 2016.
    14. Leal, Sandrine Jacob & Napoletano, Mauro, 2019. "Market stability vs. market resilience: Regulatory policies experiments in an agent-based model with low- and high-frequency trading," Journal of Economic Behavior & Organization, Elsevier, vol. 157(C), pages 15-41.
    15. Iori, Giulia, 2002. "A microsimulation of traders activity in the stock market: the role of heterogeneity, agents' interactions and trade frictions," Journal of Economic Behavior & Organization, Elsevier, vol. 49(2), pages 269-285, October.
    16. Sandrine Jacob Leal & Mauro Napoletano, 2017. "Market Stability vs. Market Resilience: Regulatory Policies Experiments in an Agent-Based Model with Low- and High-Frequency Trading," Post-Print hal-01768876, HAL.
    17. repec:hal:spmain:info:hdl:2441/f6h8764enu2lskk9p4oq9ig8k is not listed on IDEAS
    18. Gabaix, Xavier & Gopikrishnan, Parameswaran & Plerou, Vasiliki & Eugene Stanley, H., 2008. "Quantifying and understanding the economics of large financial movements," Journal of Economic Dynamics and Control, Elsevier, vol. 32(1), pages 303-319, January.
    19. Restocchi, Valerio & McGroarty, Frank & Gerding, Enrico, 2019. "The stylized facts of prediction markets: Analysis of price changes," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 515(C), pages 159-170.
    20. Rama CONT & Jean-Philippe BOUCHAUD, 1997. "Herd behavior and aggregate fluctuations in financial markets," Finance 9712008, University Library of Munich, Germany, revised 06 Jan 1998.
    21. Biondo, Alessio Emanuele, 2017. "Learning to forecast, risk aversion, and microstructural aspects of financial stability," Economics Discussion Papers 2017-104, Kiel Institute for the World Economy (IfW Kiel).
    22. Tseng, Jie-Jun & Li, Sai-Ping, 2011. "Asset returns and volatility clustering in financial time series," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(7), pages 1300-1314.

    More about this item

    Keywords

    Stylized Facts; Return Runs; Autocorrelation; Volatility Clustering; Stock Market Efficiency;
    All these keywords.

    JEL classification:

    • C10 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - General
    • C20 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - General
    • C00 - Mathematical and Quantitative Methods - - General - - - General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pra:mprapa:42645. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Joachim Winter (email available below). General contact details of provider: https://edirc.repec.org/data/vfmunde.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.