Nothing Special   »   [go: up one dir, main page]

IDEAS home Printed from https://ideas.repec.org/p/nse/doctra/m2013-01.html
   My bibliography  Save this paper

La régression quantile en pratique

Author

Listed:
  • P. GIVORD

    (Insee-Crest)

  • X. DHAULTFOEUILLE

    (Crest)

Abstract
Quantile regressions are statistical tools that describe the impact of explanatory variables on a variable of interest. They provide a more detailed picture than classic linear regression, as they focus on the entire conditional distribution of the dependent variable, not only on its mean. They are also more suited to some kind of data such as truncated and censored dependent variable, outcomes with fat-tailed distributions, nonlinear models... This document proposes a practical introduction to these tools, with a special interest on their implementation in standard statistical software (Sas, R, Stata). We also present in details two empirical applications, to help people interpreting studies that rely on these methods. Finally, we propose for more advanced readers recent extensions in particular on endogeneity issues (instrumental variables, panel data...).

Suggested Citation

  • P. Givord & X. Dhaultfoeuille, 2013. "La régression quantile en pratique," Documents de Travail de l'Insee - INSEE Working Papers m2013-01, Institut National de la Statistique et des Etudes Economiques.
  • Handle: RePEc:nse:doctra:m2013-01
    as

    Download full text from publisher

    File URL: http://www.insee.fr/fr/publications-et-services/docs_doc_travail/doc_regression_quantile.pdf
    File Function: Document de travail "Méthodologie Statistique" de la DMCSI numéro M2013/01
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Frandsen, Brigham R. & Frölich, Markus & Melly, Blaise, 2012. "Quantile treatment effects in the regression discontinuity design," Journal of Econometrics, Elsevier, vol. 168(2), pages 382-395.
    2. Marianne P. Bitler & Jonah B. Gelbach & Hilary W. Hoynes, 2006. "What Mean Impacts Miss: Distributional Effects of Welfare Reform Experiments," American Economic Review, American Economic Association, vol. 96(4), pages 988-1012, September.
    3. Jean-Michel Etienne & Mathieu Narcy, 2010. "Gender Wage Differentials in the French Nonprofit and For-Profit Sectors: Evidence from Quantile Regression," Annals of Economics and Statistics, GENES, issue 99-100, pages 67-90.
    4. Sergio Firpo, 2007. "Efficient Semiparametric Estimation of Quantile Treatment Effects," Econometrica, Econometric Society, vol. 75(1), pages 259-276, January.
    5. Alberto Abadie & Joshua Angrist & Guido Imbens, 2002. "Instrumental Variables Estimates of the Effect of Subsidized Training on the Quantiles of Trainee Earnings," Econometrica, Econometric Society, vol. 70(1), pages 91-117, January.
    6. Jackson, Erika & Page, Marianne E., 2013. "Estimating the distributional effects of education reforms: A look at Project STAR," Economics of Education Review, Elsevier, vol. 32(C), pages 92-103.
    7. Yannis Bilias & Roger Koenker, 2001. "Quantile regression for duration data: A reappraisal of the Pennsylvania Reemployment Bonus Experiments," Empirical Economics, Springer, vol. 26(1), pages 199-220.
    8. Pierre Biscourp & Xavier Boutin & Thibaud Vergé, 2013. "The Effects of Retail Regulations on Prices: Evidence from the Loi Galland," Economic Journal, Royal Economic Society, vol. 123(12), pages 1279-1312, December.
    9. James J. Heckman & Jeffrey Smith & Nancy Clements, 1997. "Making The Most Out Of Programme Evaluations and Social Experiments: Accounting For Heterogeneity in Programme Impacts," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 64(4), pages 487-535.
    10. Fortin, Nicole & Lemieux, Thomas & Firpo, Sergio, 2011. "Decomposition Methods in Economics," Handbook of Labor Economics, in: O. Ashenfelter & D. Card (ed.), Handbook of Labor Economics, edition 1, volume 4, chapter 1, pages 1-102, Elsevier.
    11. Ivan A. Canay, 2011. "A simple approach to quantile regression for panel data," Econometrics Journal, Royal Economic Society, vol. 14(3), pages 368-386, October.
    12. Koenker, Roger, 2004. "Quantile regression for longitudinal data," Journal of Multivariate Analysis, Elsevier, vol. 91(1), pages 74-89, October.
    13. Victor Chernozhukov & Iv·n Fern·ndez-Val & Alfred Galichon, 2010. "Quantile and Probability Curves Without Crossing," Econometrica, Econometric Society, vol. 78(3), pages 1093-1125, May.
    14. Koenker,Roger, 2005. "Quantile Regression," Cambridge Books, Cambridge University Press, number 9780521845731, September.
    15. Sergio Firpo & Nicole M. Fortin & Thomas Lemieux, 2009. "Unconditional Quantile Regressions," Econometrica, Econometric Society, vol. 77(3), pages 953-973, May.
    16. Marianne P. Bitler & Jonah B. Gelbach & Hilary W. Hoynes, 2017. "Can Variation in Subgroups' Average Treatment Effects Explain Treatment Effect Heterogeneity? Evidence from a Social Experiment," The Review of Economics and Statistics, MIT Press, vol. 99(4), pages 683-697, July.
    17. Powell, James L., 1984. "Least absolute deviations estimation for the censored regression model," Journal of Econometrics, Elsevier, vol. 25(3), pages 303-325, July.
    18. repec:adr:anecst:y:2010:i:99-100:p:04 is not listed on IDEAS
    19. Gabrielle Fack & Camille Landais, 2009. "Les incitations fiscales aux dons sont-elles efficaces ?," Économie et Statistique, Programme National Persée, vol. 427(1), pages 101-121.
    20. Bernd Fitzenberger & Ralf Wilke, 2006. "Using quantile regression for duration analysis," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 90(1), pages 105-120, March.
    21. Moshe Buchinsky, 1998. "The dynamics of changes in the female wage distribution in the USA: a quantile regression approach," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 13(1), pages 1-30.
    22. Pierre Biscourp & Xavier Boutin & Thibaud Vergé, 2013. "The Effects of Retail Regulations on Prices: Evidence from the Loi Galland," Economic Journal, Royal Economic Society, vol. 123(12), pages 1279-1312, December.
    23. repec:dau:papers:123456789/13136 is not listed on IDEAS
    24. Roger Koenker & Kevin F. Hallock, 2001. "Quantile Regression," Journal of Economic Perspectives, American Economic Association, vol. 15(4), pages 143-156, Fall.
    25. Giorgia Casalone & Daniela Sonedda, 2013. "Evaluating The Distributional Effects Of Fiscal Policies Using Quantile Regressions," Review of Income and Wealth, International Association for Research in Income and Wealth, vol. 59(2), pages 305-325, June.
    26. repec:hal:spmain:info:hdl:2441/5rkqqmvrn4tl22s9mc4b6ga2g is not listed on IDEAS
    27. Romain Aeberhardt & Denis Fougère & Julien Pouget & Roland Rathelot, 2010. "L’emploi et les salaires des enfants d’immigrés," Économie et Statistique, Programme National Persée, vol. 433(1), pages 31-46.
    28. Lamarche, Carlos, 2010. "Robust penalized quantile regression estimation for panel data," Journal of Econometrics, Elsevier, vol. 157(2), pages 396-408, August.
    29. Dominique Meurs & Sophie Ponthieux, 2006. "L'écart des salaires entre les femmes et les hommes peut-il encore baisser ?," Économie et Statistique, Programme National Persée, vol. 398(1), pages 99-129.
    30. Hong H. & Chernozhukov V., 2002. "Three-Step Censored Quantile Regression and Extramarital Affairs," Journal of the American Statistical Association, American Statistical Association, vol. 97, pages 872-882, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Romuald Foueka, 2020. "Analyse du différentiel de performances scolaires dans les pays PASEC sur la base de la régression quantile contrefactuelle," African Development Review, African Development Bank, vol. 32(4), pages 605-618, December.
    2. Issofou NJIFEN & Aicha PEMBOURA, 2020. "Hétérogénéité dans les rendements de l’éducation au Cameroun : une estimation en présence des biais de sélection et d’endogénéité," Region et Developpement, Region et Developpement, LEAD, Universite du Sud - Toulon Var, vol. 52, pages 105-126.
    3. Voyant, Cyril & Motte, Fabrice & Notton, Gilles & Fouilloy, Alexis & Nivet, Marie-Laure & Duchaud, Jean-Laurent, 2018. "Prediction intervals for global solar irradiation forecasting using regression trees methods," Renewable Energy, Elsevier, vol. 126(C), pages 332-340.
    4. Nadine Levratto & Aziza Garsaa & Luc Tessier, 2013. "To what extent do exemptions from social security contributions affect firm growth? New evidence using quantile estimations on panel data," Working Papers hal-00833049, HAL.
    5. Matthieu Chtioui Cepn & Nadine Levratto, 2020. "Fiscalité locale et dynamique d'emploi des territoires : analyse empirique sur les communes françaises (Version preprint) A paraitre dans la Revue d'Economie Régionale et urbaine, 2021," Working Papers halshs-02901499, HAL.
    6. Pauline Givord & Milena Suarez Castillo, 2021. "What Makes a Good High School? Measuring School Effects beyond the Average," Economie et Statistique / Economics and Statistics, Institut National de la Statistique et des Etudes Economiques (INSEE), issue 528-529, pages 29-45.
    7. Ben Rejeb, Aymen, 2016. "Volatility Spillover between Islamic and conventional stock markets: evidence from Quantile Regression analysis," MPRA Paper 73302, University Library of Munich, Germany.
    8. B. Garbinti & P. Lamarche, 2014. "Do the High-Income Households Save More?," Documents de Travail de l'Insee - INSEE Working Papers g2014-10, Institut National de la Statistique et des Etudes Economiques.
    9. S. Béreau & V. Faubert & K. Schmidt, 2018. "Explaining and Forecasting Euro Area Inflation: the Role of Domestic and Global Factors," Working papers 663, Banque de France.
    10. Salomé Bakaloglou & Dorothée Charlier, 2018. "The role of individual preferences to explain the energy performance gap," Policy Papers 2018.08, FAERE - French Association of Environmental and Resource Economists.
    11. Bertrand Garbinti & Pierre Lamarche, 2014. "Les hauts revenus épargnent‑ils davantage ?," Économie et Statistique, Programme National Persée, vol. 472(1), pages 49-64.
    12. T. Razafindranovona, 2016. "Exploitation de l'enquête expérimentale Logement internet/papier," Document de travail "Methodologie Statistique" - DMS Working Paper m2016-08, Institut National de la Statistique et des Etudes Economiques.
    13. Bakaloglou, Salomé & Charlier, Dorothée, 2021. "The role of individual preferences in explaining the energy performance gap," Energy Economics, Elsevier, vol. 104(C).
    14. Arthur Charpentier & Emmanuel Flachaire & Antoine Ly, 2018. "Économétrie & Machine Learning," Working Papers hal-01568851, HAL.
    15. Ben Rejeb, Aymen, 2017. "On the volatility spillover between lslamic and conventional stock markets: A quantile regression analysis," Research in International Business and Finance, Elsevier, vol. 42(C), pages 794-815.
    16. Jamal Bouoiyour & Refk Selmi, 2017. "The Bitcoin price formation: Beyond the fundamental sources," Working Papers hal-01548710, HAL.
    17. Maichanou, Ahamadou & Dan Baky, Agada, 2022. "Private Intra-household Transfers as a Palliative for the Incompleteness of Social Protection: Evidence from Niger," African Journal of Economic Review, African Journal of Economic Review, vol. 10(2), March.
    18. Clara Champagne & Ariane Pailhé & Anne Solaz, 2015. "Le temps domestique et parental des hommes et des femmes : quels facteurs d'évolutions en 25 ans ?," Économie et Statistique, Programme National Persée, vol. 478(1), pages 209-242.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Victor Chernozhukov & Iván Fernández‐Val & Blaise Melly, 2013. "Inference on Counterfactual Distributions," Econometrica, Econometric Society, vol. 81(6), pages 2205-2268, November.
    2. Antecol, Heather & Eren, Ozkan & Ozbeklik, Serkan, 2013. "The effect of Teach for America on the distribution of student achievement in primary school: Evidence from a randomized experiment," Economics of Education Review, Elsevier, vol. 37(C), pages 113-125.
    3. Harding, Matthew & Lamarche, Carlos, 2019. "A panel quantile approach to attrition bias in Big Data: Evidence from a randomized experiment," Journal of Econometrics, Elsevier, vol. 211(1), pages 61-82.
    4. Denis Chetverikov & Bradley Larsen & Christopher Palmer, 2016. "IV Quantile Regression for Group‐Level Treatments, With an Application to the Distributional Effects of Trade," Econometrica, Econometric Society, vol. 84, pages 809-833, March.
    5. Manuel Arellano & Stéphane Bonhomme, 2016. "Nonlinear panel data estimation via quantile regressions," Econometrics Journal, Royal Economic Society, vol. 19(3), pages 61-94, October.
    6. Hartley, Robert Paul & Lamarche, Carlos, 2018. "Behavioral responses and welfare reform: Evidence from a randomized experiment," Labour Economics, Elsevier, vol. 54(C), pages 135-151.
    7. Machado, José A.F. & Santos Silva, J.M.C., 2019. "Quantiles via moments," Journal of Econometrics, Elsevier, vol. 213(1), pages 145-173.
    8. Ozkan Eren & Serkan Ozbeklik, 2014. "Who Benefits From Job Corps? A Distributional Analysis Of An Active Labor Market Program," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 29(4), pages 586-611, June.
    9. Bernd Fitzenberger & Benjamin Fuchs, 2017. "The Residency Discount for Rents in Germany and the Tenancy Law Reform Act 2001: Evidence from Quantile Regressions," German Economic Review, Verein für Socialpolitik, vol. 18(2), pages 212-236, May.
    10. Simone Balestra & Uschi Backes-Gellner, 2014. "Heterogeneous effects of pupil-to-teacher ratio policies - A look at class size reduction and teacher aide," Economics of Education Working Paper Series 0102, University of Zurich, Department of Business Administration (IBW), revised Apr 2017.
    11. Roger Koenker, 2017. "Quantile regression 40 years on," CeMMAP working papers CWP36/17, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    12. Manuel Arellano & Stéphane Bonhomme, 2017. "Quantile Selection Models With an Application to Understanding Changes in Wage Inequality," Econometrica, Econometric Society, vol. 85, pages 1-28, January.
    13. Callaway, Brantly & Li, Tong & Oka, Tatsushi, 2018. "Quantile treatment effects in difference in differences models under dependence restrictions and with only two time periods," Journal of Econometrics, Elsevier, vol. 206(2), pages 395-413.
    14. Balestra, Simone & Backes-Gellner, Uschi, 2017. "Heterogeneous returns to education over the wage distribution: Who profits the most?," Labour Economics, Elsevier, vol. 44(C), pages 89-105.
    15. You, Wanhai & Guo, Yawei & Zhu, Huiming & Tang, Yong, 2017. "Oil price shocks, economic policy uncertainty and industry stock returns in China: Asymmetric effects with quantile regression," Energy Economics, Elsevier, vol. 68(C), pages 1-18.
    16. Damian Clarke & Manuel Llorca Jaña & Daniel Pailañir, 2023. "The use of quantile methods in economic history," Historical Methods: A Journal of Quantitative and Interdisciplinary History, Taylor & Francis Journals, vol. 56(2), pages 115-132, April.
    17. Maria Marino & Alessio Farcomeni, 2015. "Linear quantile regression models for longitudinal experiments: an overview," METRON, Springer;Sapienza Università di Roma, vol. 73(2), pages 229-247, August.
    18. Callaway, Brantly, 2021. "Bounds on distributional treatment effect parameters using panel data with an application on job displacement," Journal of Econometrics, Elsevier, vol. 222(2), pages 861-881.
    19. Xiao, Zhijie & Xu, Lan, 2019. "What do mean impacts miss? Distributional effects of corporate diversification," Journal of Econometrics, Elsevier, vol. 213(1), pages 92-120.
    20. Liang Chen & Juan J. Dolado & Jesús Gonzalo, 2021. "Quantile Factor Models," Econometrica, Econometric Society, vol. 89(2), pages 875-910, March.

    More about this item

    Keywords

    Quantile Regression; Quantile Treatment Effect; Instrumental Variable Quantile Regression; Quantile Regression with panel data.;
    All these keywords.

    JEL classification:

    • C1 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General
    • C3 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nse:doctra:m2013-01. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: INSEE (email available below). General contact details of provider: https://edirc.repec.org/data/inseefr.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.