Bayesian Forecasting in the 21st Century: A Modern Review
Author
Suggested Citation
Download full text from publisher
References listed on IDEAS
- da Silva, Felipe L.C. & Cyrino Oliveira, Fernando L. & Souza, Reinaldo C., 2019. "A bottom-up bayesian extension for long term electricity consumption forecasting," Energy, Elsevier, vol. 167(C), pages 198-210.
- Brusaferri, Alessandro & Matteucci, Matteo & Portolani, Pietro & Vitali, Andrea, 2019. "Bayesian deep learning based method for probabilistic forecast of day-ahead electricity prices," Applied Energy, Elsevier, vol. 250(C), pages 1158-1175.
- Geweke, John, 1989. "Bayesian Inference in Econometric Models Using Monte Carlo Integration," Econometrica, Econometric Society, vol. 57(6), pages 1317-1339, November.
- Chib, Siddhartha & Greenberg, Edward, 1994. "Bayes inference in regression models with ARMA (p, q) errors," Journal of Econometrics, Elsevier, vol. 64(1-2), pages 183-206.
- Billio, Monica & Casarin, Roberto & Ravazzolo, Francesco & van Dijk, Herman K., 2013.
"Time-varying combinations of predictive densities using nonlinear filtering,"
Journal of Econometrics, Elsevier, vol. 177(2), pages 213-232.
- Monica Billio & Roberto Casarin & Francesco Ravazzolo & Herman K. van Dijk, 2012. "Time-varying Combinations of Predictive Densities using Nonlinear Filtering," Tinbergen Institute Discussion Papers 12-118/III, Tinbergen Institute.
- Strickland, Chris M. & Martin, Gael M. & Forbes, Catherine S., 2008.
"Parameterisation and efficient MCMC estimation of non-Gaussian state space models,"
Computational Statistics & Data Analysis, Elsevier, vol. 52(6), pages 2911-2930, February.
- Chris M Strickland & Gael Martin & Catherine S Forbes, 2006. "Parameterisation and Efficient MCMC Estimation of Non-Gaussian State Space Models," Monash Econometrics and Business Statistics Working Papers 22/06, Monash University, Department of Econometrics and Business Statistics.
- Cross, Jamie L. & Hou, Chenghan & Poon, Aubrey, 2020. "Macroeconomic forecasting with large Bayesian VARs: Global-local priors and the illusion of sparsity," International Journal of Forecasting, Elsevier, vol. 36(3), pages 899-915.
- Dimitris Korobilis, 2013.
"Var Forecasting Using Bayesian Variable Selection,"
Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 28(2), pages 204-230, March.
- Korobilis, Dimitris, 2009. "VAR forecasting using Bayesian variable selection," MPRA Paper 21124, University Library of Munich, Germany.
- KOROBILIS, Dimitris, 2011. "VAR forecasting using Bayesian variable selection," LIDAM Discussion Papers CORE 2011022, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
- Dimitris Korobilis, 2010. "VAR Forecasting Using Bayesian Variable Selection," Working Paper series 51_10, Rimini Centre for Economic Analysis, revised Apr 2011.
- Jacquier, Eric & Polson, Nicholas G & Rossi, Peter E, 2002.
"Bayesian Analysis of Stochastic Volatility Models,"
Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 69-87, January.
- Jacquier, Eric & Polson, Nicholas G & Rossi, Peter E, 1994. "Bayesian Analysis of Stochastic Volatility Models," Journal of Business & Economic Statistics, American Statistical Association, vol. 12(4), pages 371-389, October.
- Michele Lenza & Giorgio E. Primiceri, 2022. "How to estimate a vector autoregression after March 2020," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 37(4), pages 688-699, June.
- Jensen, Mark J. & Maheu, John M., 2013.
"Bayesian semiparametric multivariate GARCH modeling,"
Journal of Econometrics, Elsevier, vol. 176(1), pages 3-17.
- Mark J. Jensen & John M. Maheu, 2012. "Bayesian semiparametric multivariate GARCH modeling," FRB Atlanta Working Paper 2012-09, Federal Reserve Bank of Atlanta.
- Mark J. Jensen & John M. Maheu, 2012. "Bayesian Semiparametric Multivariate GARCH Modeling," Working Paper series 48_12, Rimini Centre for Economic Analysis.
- Mark J Jensen & John M Maheu, 2012. "Bayesian semiparametric multivariate GARCH modeling," Working Papers tecipa-458, University of Toronto, Department of Economics.
- Ohtsuka, Yoshihiro & Oga, Takashi & Kakamu, Kazuhiko, 2010. "Forecasting electricity demand in Japan: A Bayesian spatial autoregressive ARMA approach," Computational Statistics & Data Analysis, Elsevier, vol. 54(11), pages 2721-2735, November.
- James H. Stock & Mark W. Watson, 2016.
"Core Inflation and Trend Inflation,"
The Review of Economics and Statistics, MIT Press, vol. 98(4), pages 770-784, October.
- James H. Stock & Mark W. Watson, 2015. "Core Inflation and Trend Inflation," NBER Working Papers 21282, National Bureau of Economic Research, Inc.
- Bakshi, Gurdip & Cao, Charles & Chen, Zhiwu, 1997.
"Empirical Performance of Alternative Option Pricing Models,"
Journal of Finance, American Finance Association, vol. 52(5), pages 2003-2049, December.
- Charles Quanwei Cao & Gurdip S. Bakshi & Zhiwu Chen, 1997. "Empirical Performance of Alternative Option Pricing Models," Yale School of Management Working Papers ysm54, Yale School of Management.
- Charles Quanwei Cao & Gurdip S. Bakshi & Zhiwu Chen, 1997. "Empirical Performance of Alternative Option Pricing Models," Yale School of Management Working Papers ysm65, Yale School of Management.
- McCulloch, Robert E. & Polson, Nicholas G. & Rossi, Peter E., 2000. "A Bayesian analysis of the multinomial probit model with fully identified parameters," Journal of Econometrics, Elsevier, vol. 99(1), pages 173-193, November.
- Zhou, Xiaocong & Nakajima, Jouchi & West, Mike, 2014. "Bayesian forecasting and portfolio decisions using dynamic dependent sparse factor models," International Journal of Forecasting, Elsevier, vol. 30(4), pages 963-980.
- Creel, Michael & Kristensen, Dennis, 2015.
"ABC of SV: Limited information likelihood inference in stochastic volatility jump-diffusion models,"
Journal of Empirical Finance, Elsevier, vol. 31(C), pages 85-108.
- Michael Creel & Dennis Kristensen, 2014. "ABC of SV: Limited Information Likelihood Inference in Stochastic Volatility Jump-Diffusion Models," CREATES Research Papers 2014-30, Department of Economics and Business Economics, Aarhus University.
- McFadden, Daniel, 1989.
"A Method of Simulated Moments for Estimation of Discrete Response Models without Numerical Integration,"
Econometrica, Econometric Society, vol. 57(5), pages 995-1026, September.
- Daniel McFadden, 1987. "A Method of Simulated Moments for Estimation of Discrete Response Models Without Numerical Integration," Working papers 464, Massachusetts Institute of Technology (MIT), Department of Economics.
- Jensen, Mark J. & Maheu, John M., 2010.
"Bayesian semiparametric stochastic volatility modeling,"
Journal of Econometrics, Elsevier, vol. 157(2), pages 306-316, August.
- Mark J Jensen & John M Maheu, 2008. "Bayesian semiparametric stochastic volatility modeling," Working Papers tecipa-314, University of Toronto, Department of Economics.
- Mark J. Jensen & John M. Maheu, 2009. "Bayesian Semiparametric Stochastic Volatility Modeling," Working Paper series 23_09, Rimini Centre for Economic Analysis.
- Mark J. Jensen & John M. Maheu, 2008. "Bayesian semiparametric stochastic volatility modeling," FRB Atlanta Working Paper 2008-15, Federal Reserve Bank of Atlanta.
- Raviv, Eran & Bouwman, Kees E. & van Dijk, Dick, 2015.
"Forecasting day-ahead electricity prices: Utilizing hourly prices,"
Energy Economics, Elsevier, vol. 50(C), pages 227-239.
- Eran Raviv & Kees E. Bouwman & Dick van Dijk, 2013. "Forecasting Day-Ahead Electricity Prices: Utilizing Hourly Prices," Tinbergen Institute Discussion Papers 13-068/III, Tinbergen Institute.
- Panagiotelis, Anastasios & Smith, Michael, 2008. "Bayesian density forecasting of intraday electricity prices using multivariate skew t distributions," International Journal of Forecasting, Elsevier, vol. 24(4), pages 710-727.
- Roberto Casarin & Stefano Grassi & Francesco Ravazzolo & Herman K. van Dijk, 2019.
"Forecast density combinations with dynamic learning for large data sets in economics and finance,"
Working Paper
2019/7, Norges Bank.
- Roberto Casarin & Stefano Grassi & Francesco Ravazzollo & Herman K. van Dijk, 2019. "Forecast Density Combinations with Dynamic Learning for Large Data Sets in Economics and Finance," Tinbergen Institute Discussion Papers 19-025/III, Tinbergen Institute.
- Gallant, A. Ronald & Tauchen, George, 1996.
"Which Moments to Match?,"
Econometric Theory, Cambridge University Press, vol. 12(4), pages 657-681, October.
- Tauchen, George E. & Gallant, A. Ronald, 1995. "Which Moments to Match," Working Papers 95-20, Duke University, Department of Economics.
- Xin Jin & John M. Maheu, 2013.
"Modeling Realized Covariances and Returns,"
Journal of Financial Econometrics, Oxford University Press, vol. 11(2), pages 335-369, March.
- Xin Jin & John M Maheu, 2010. "Modelling Realized Covariances and Returns," Working Papers tecipa-408, University of Toronto, Department of Economics.
- Xin Jin & John M. Maheu, 2011. "Modelling Realized Covariances and Returns," Working Paper series 08_11, Rimini Centre for Economic Analysis.
- Xin Jin & John M. Maheu, 2012. "Modelling Realized Covariances and Returns," Working Paper series 49_12, Rimini Centre for Economic Analysis.
- Strickland, Chris M. & Forbes, Catherine S. & Martin, Gael M., 2006.
"Bayesian analysis of the stochastic conditional duration model,"
Computational Statistics & Data Analysis, Elsevier, vol. 50(9), pages 2247-2267, May.
- Chris M. Strickland & Catherine S. Forbes & Gael M. Martin, 2003. "Bayesian Analysis of the Stochastic Conditional Duration Model," Monash Econometrics and Business Statistics Working Papers 14/03, Monash University, Department of Econometrics and Business Statistics.
- Huber, Florian & Koop, Gary & Onorante, Luca & Pfarrhofer, Michael & Schreiner, Josef, 2023.
"Nowcasting in a pandemic using non-parametric mixed frequency VARs,"
Journal of Econometrics, Elsevier, vol. 232(1), pages 52-69.
- Florian Huber & Gary Koop & Luca Onorante & Michael Pfarrhofer & Josef Schreiner, 2020. "Nowcasting in a Pandemic using Non-Parametric Mixed Frequency VARs," Papers 2008.12706, arXiv.org, revised Dec 2020.
- Florian, Huber & Koop, Gary & Onorante, Luca & Pfarrhofer, Michael & Schreiner, Josef, 2021. "Nowcasting in a Pandemic using Non-Parametric Mixed Frequency VARs," Working Papers 2021-01, Joint Research Centre, European Commission.
- Huber, Florian & Koop, Gary & Onorante, Luca & Pfarrhofer, Michael & Schreiner, Josef, 2021. "Nowcasting in a pandemic using non-parametric mixed frequency VARs," Working Paper Series 2510, European Central Bank.
- Koop, Gary & Korobilis, Dimitris, 2010.
"Bayesian Multivariate Time Series Methods for Empirical Macroeconomics,"
Foundations and Trends(R) in Econometrics, now publishers, vol. 3(4), pages 267-358, July.
- Koop, Gary & Korobilis, Dimitris, 2009. "Bayesian Multivariate Time Series Methods for Empirical Macroeconomics," MPRA Paper 20125, University Library of Munich, Germany.
- Gary Koop & Dimitris Korobilis, 2009. "Bayesian Multivariate Time Series Methods for Empirical Macroeconomics," Working Paper series 47_09, Rimini Centre for Economic Analysis.
- Andrea Carriero & Todd E. Clark & Massimiliano Marcellino, 2015.
"Bayesian VARs: Specification Choices and Forecast Accuracy,"
Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 30(1), pages 46-73, January.
- Marcellino, Massimiliano & Carriero, Andrea & Clark, Todd, 2011. "Bayesian VARs: Specification Choices and Forecast Accuracy," CEPR Discussion Papers 8273, C.E.P.R. Discussion Papers.
- Andrea Carriero & Todd E. Clark & Massimiliano Marcellino, 2011. "Bayesian VARs: specification choices and forecast accuracy," Working Papers (Old Series) 1112, Federal Reserve Bank of Cleveland.
- Gonzato, Luca & Sgarra, Carlo, 2021. "Self-exciting jumps in the oil market: Bayesian estimation and dynamic hedging," Energy Economics, Elsevier, vol. 99(C).
- Martin, Gael M. & Loaiza-Maya, Rubén & Maneesoonthorn, Worapree & Frazier, David T. & Ramírez-Hassan, Andrés, 2022.
"Optimal probabilistic forecasts: When do they work?,"
International Journal of Forecasting, Elsevier, vol. 38(1), pages 384-406.
- Gael M. Martin & Rub'en Loaiza-Maya & David T. Frazier & Worapree Maneesoonthorn & Andr'es Ram'irez Hassan, 2020. "Optimal probabilistic forecasts: When do they work?," Papers 2009.09592, arXiv.org.
- Ruben Loaiza-Maya & Gael M. Martin & David T. Frazier & Worapree Maneesoonthorn & Andres Ramirez Hassan, 2020. "Optimal probabilistic forecasts: When do they work?," Monash Econometrics and Business Statistics Working Papers 33/20, Monash University, Department of Econometrics and Business Statistics.
- Ruben Loaiza‐Maya & Gael M. Martin & David T. Frazier, 2021.
"Focused Bayesian prediction,"
Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 36(5), pages 517-543, August.
- Ruben Loaiza-Maya & Gael M. Martin & David T. Frazier, 2019. "Focused Bayesian Prediction," Papers 1912.12571, arXiv.org, revised Aug 2020.
- Ruben Loaiza-Maya & Gael M Martin & David T. Frazier, 2020. "Focused Bayesian Prediction," Monash Econometrics and Business Statistics Working Papers 1/20, Monash University, Department of Econometrics and Business Statistics.
- Kenichiro McAlinn & Knut Are Aastveit & Jouchi Nakajima & Mike West, 2020.
"Multivariate Bayesian Predictive Synthesis in Macroeconomic Forecasting,"
Journal of the American Statistical Association, Taylor & Francis Journals, vol. 115(531), pages 1092-1110, July.
- Kenichiro McAlinn & Knut Are Aastveit & Jouchi Nakajima & Mike West, 2019. "Multivariate Bayesian Predictive Synthesis in Macroeconomic Forecasting," Working Papers No 01/2019, Centre for Applied Macro- and Petroleum economics (CAMP), BI Norwegian Business School.
- Kenichiro McAlinn & Knut Are Aastveit & Jouchi Nakajima & Mike West, 2019. "Multivariate Bayesian Predictive Synthesis in Macroeconomic Forecasting," Working Paper 2019/2, Norges Bank.
- Carriero, A. & Kapetanios, G. & Marcellino, M., 2009.
"Forecasting exchange rates with a large Bayesian VAR,"
International Journal of Forecasting, Elsevier, vol. 25(2), pages 400-417.
- Andrea Carriero & George Kapetanios & Massimiliano Marcellino, 2008. "Forecasting Exchange Rates with a Large Bayesian VAR," Working Papers 634, Queen Mary University of London, School of Economics and Finance.
- A. Carriero & G. Kapetanios & M. Marcellino, 2008. "Forecasting Exchange Rates with a Large Bayesian VAR," Economics Working Papers ECO2008/33, European University Institute.
- Marcellino, Massimiliano & Kapetanios, George & Carriero, Andrea, 2008. "Forecasting Exchange Rates with a Large Bayesian VAR," CEPR Discussion Papers 7008, C.E.P.R. Discussion Papers.
- V. L. Martin & G. M. Martin & G. C. Lim, 2005.
"Parametric pricing of higher order moments in S&P500 options,"
Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 20(3), pages 377-404.
- G. C. Lim & G. M. Martin & V. L. Martin, 2005. "Parametric pricing of higher order moments in S&P500 options," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 20(3), pages 377-404, March.
- G.C. Lim & G.M. Martin & V.L. Martin, 2002. "Parametric Pricing of Higher Order Moments in S&P500 Options," Monash Econometrics and Business Statistics Working Papers 1/02, Monash University, Department of Econometrics and Business Statistics.
- Chan, Joshua C.C. & Yu, Xuewen, 2022.
"Fast and Accurate Variational Inference for Large Bayesian VARs with Stochastic Volatility,"
Journal of Economic Dynamics and Control, Elsevier, vol. 143(C).
- Joshua C.C. Chan & Xuewen Yu, 2020. "Fast and accurate variational inference for large Bayesian VARs with stochastic volatility," CAMA Working Papers 2020-108, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.
- Joshua C. C. Chan & Xuewen Yu, 2022. "Fast and Accurate Variational Inference for Large Bayesian VARs with Stochastic Volatility," Papers 2206.08438, arXiv.org.
- Catherine S. Forbes & Gael M. Martin & Jill Wright, 2007. "Inference for a Class of Stochastic Volatility Models Using Option and Spot Prices: Application of a Bivariate Kalman Filter," Econometric Reviews, Taylor & Francis Journals, vol. 26(2-4), pages 387-418.
- Joshua C. C. Chan, 2022.
"Asymmetric conjugate priors for large Bayesian VARs,"
Quantitative Economics, Econometric Society, vol. 13(3), pages 1145-1169, July.
- Joshua C. C. Chan, 2019. "Asymmetric conjugate priors for large Bayesian VARs," CAMA Working Papers 2019-51, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.
- Joshua C. C. Chan, 2021. "Asymmetric Conjugate Priors for Large Bayesian VARs," Papers 2111.07170, arXiv.org.
- Li, Chenxing, 2022. "A multivariate GARCH model with an infinite hidden Markov mixture," MPRA Paper 112792, University Library of Munich, Germany.
- Joshua C. C. Chan & Gary Koop & Xuewen Yu, 2024.
"Large Order-Invariant Bayesian VARs with Stochastic Volatility,"
Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 42(2), pages 825-837, April.
- Joshua C. C. Chan & Gary Koop & Xuewen Yu, 2021. "Large Order-Invariant Bayesian VARs with Stochastic Volatility," Papers 2111.07225, arXiv.org.
- Gianfreda, Angelica & Ravazzolo, Francesco & Rossini, Luca, 2020.
"Comparing the forecasting performances of linear models for electricity prices with high RES penetration,"
International Journal of Forecasting, Elsevier, vol. 36(3), pages 974-986.
- Angelica Gianfreda & Francesco Ravazzolo & Luca Rossini, 2018. "Comparing the Forecasting Performances of Linear Models for Electricity Prices with High RES Penetration," Papers 1801.01093, arXiv.org, revised Nov 2019.
- Angelica Gianfreda & Francesco Ravazzolo & Luca Rossini, 2018. "Comparing the Forecasting Performances of Linear Models for Electricity Prices with High RES Penetration," Working Papers No 2/2018, Centre for Applied Macro- and Petroleum economics (CAMP), BI Norwegian Business School.
- Ausín, M. Concepción & Galeano, Pedro & Ghosh, Pulak, 2014.
"A semiparametric Bayesian approach to the analysis of financial time series with applications to value at risk estimation,"
European Journal of Operational Research, Elsevier, vol. 232(2), pages 350-358.
- Galeano, Pedro & Ghosh, Pulak, 2010. "A semiparametric Bayesian approach to the analysis of financial time series with applications to value at risk estimation," DES - Working Papers. Statistics and Econometrics. WS ws103822, Universidad Carlos III de Madrid. Departamento de EstadÃstica.
- Sangjoon Kim & Neil Shephard & Siddhartha Chib, 1998.
"Stochastic Volatility: Likelihood Inference and Comparison with ARCH Models,"
The Review of Economic Studies, Review of Economic Studies Ltd, vol. 65(3), pages 361-393.
- Sangjoon Kim, Neil Shephard & Siddhartha Chib, "undated". "Stochastic volatility: likelihood inference and comparison with ARCH models," Economics Papers W26, revised version of W, Economics Group, Nuffield College, University of Oxford.
- Sangjoon Kim & Neil Shephard, 1994. "Stochastic volatility: likelihood inference and comparison with ARCH models," Economics Papers 3., Economics Group, Nuffield College, University of Oxford.
- Sangjoon Kim & Neil Shephard & Siddhartha Chib, 1996. "Stochastic Volatility: Likelihood Inference And Comparison With Arch Models," Econometrics 9610002, University Library of Munich, Germany.
- Antonello D'Agostino & Luca Gambetti & Domenico Giannone, 2013.
"Macroeconomic forecasting and structural change,"
Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 28(1), pages 82-101, January.
- Antonello D'Agostino & Luca Gambetti & Domenico Giannone, 2009. "Macroeconomic Forecasting and Structural Change," Working Papers ECARES 2009_020, ULB -- Universite Libre de Bruxelles.
- Giannone, Domenico & D'Agostino, Antonello & Gambetti, Luca, 2010. "Macroeconomic forecasting and structural change," Working Paper Series 1167, European Central Bank.
- D'Agostino, Antonello & Gambetti, Luca & Giannone, Domenico & Giannone, Domenico, 2009. "Macroeconomic Forecasting and Structural Change," Research Technical Papers 8/RT/09, Central Bank of Ireland.
- Giannone, Domenico & D’Agostino, Antonello & Gambetti, Luca, 2009. "Macroeconomic Forecasting and Structural Change," CEPR Discussion Papers 7542, C.E.P.R. Discussion Papers.
- Gary M. Koop, 2013.
"Forecasting with Medium and Large Bayesian VARS,"
Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 28(2), pages 177-203, March.
- Gary Koop, 2010. "Forecasting with Medium and Large Bayesian VARs," Working Paper series 43_10, Rimini Centre for Economic Analysis.
- Gary Koop, 2011. "Forecasting with Medium and Large Bayesian VARs," Working Papers 1117, University of Strathclyde Business School, Department of Economics.
- Koop, Gary, 2011. "Forecasting with Medium and Large Bayesian VARs," SIRE Discussion Papers 2011-38, Scottish Institute for Research in Economics (SIRE).
- Geweke, John & Amisano, Gianni, 2011.
"Optimal prediction pools,"
Journal of Econometrics, Elsevier, vol. 164(1), pages 130-141, September.
- John Geweke & Gianni Amisano, 2008. "Optimal Prediction Pools," Working Paper series 22_08, Rimini Centre for Economic Analysis.
- Amisano, Gianni & Geweke, John, 2009. "Optimal Prediction Pools," Working Paper Series 1017, European Central Bank.
- Nowotarski, Jakub & Raviv, Eran & Trück, Stefan & Weron, Rafał, 2014.
"An empirical comparison of alternative schemes for combining electricity spot price forecasts,"
Energy Economics, Elsevier, vol. 46(C), pages 395-412.
- Jakub Nowotarski & Eran Raviv & Stefan Trueck & Rafal Weron, 2013. "An empirical comparison of alternate schemes for combining electricity spot price forecasts," HSC Research Reports HSC/13/07, Hugo Steinhaus Center, Wroclaw University of Science and Technology.
- Geraci, Marco Valerio & Gnabo, Jean-Yves, 2018.
"Measuring Interconnectedness between Financial Institutions with Bayesian Time-Varying Vector Autoregressions,"
Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 53(3), pages 1371-1390, June.
- Marco Valerio Geraci & Jean-Yves Gnabo, 2015. "Measuring interconnectedness between financial institutions with Bayesian time-varying vector autoregressions," Working Papers ECARES 2015-51, ULB -- Universite Libre de Bruxelles.
- Florian Huber & Michael Pfarrhofer, 2021.
"Dynamic shrinkage in time‐varying parameter stochastic volatility in mean models,"
Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 36(2), pages 262-270, March.
- Florian Huber & Michael Pfarrhofer, 2020. "Dynamic shrinkage in time-varying parameter stochastic volatility in mean models," Papers 2005.06851, arXiv.org.
- repec:dau:papers:123456789/3578 is not listed on IDEAS
- Ben S. Bernanke & Jean Boivin & Piotr Eliasz, 2005.
"Measuring the Effects of Monetary Policy: A Factor-Augmented Vector Autoregressive (FAVAR) Approach,"
The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 120(1), pages 387-422.
- Ben S. Bernanke & Jean Boivin & Piotr Eliasz, 2004. "Measuring the effects of monetary policy: a factor-augmented vector autoregressive (FAVAR) approach," Finance and Economics Discussion Series 2004-03, Board of Governors of the Federal Reserve System (U.S.).
- Ben S. Bernanke & Jean Boivin & Piotr Eliasz, 2004. "Measuring the Effects of Monetary Policy: A Factor-Augmented Vector Autoregressive (FAVAR) Approach," NBER Working Papers 10220, National Bureau of Economic Research, Inc.
- Weron, Rafał, 2014.
"Electricity price forecasting: A review of the state-of-the-art with a look into the future,"
International Journal of Forecasting, Elsevier, vol. 30(4), pages 1030-1081.
- Rafal Weron, 2014. "Electricity price forecasting: A review of the state-of-the-art with a look into the future," HSC Research Reports HSC/14/07, Hugo Steinhaus Center, Wroclaw University of Technology.
- Joshua C. C. Chan & Gary Koop & Simon M. Potter, 2013.
"A New Model of Trend Inflation,"
Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 31(1), pages 94-106, January.
- Joshua Chan & Gary Koop & Simon Potter, 2012. "A New Model of Trend Inflation," Working Papers 1202, University of Strathclyde Business School, Department of Economics.
- Joshua C C Chan & Gary Koop & Simon M Potter, 2012. "A New Model of Trend Inflation," CAMA Working Papers 2012-08, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.
- Chan, Joshua & Koop, Gary & Potter, Simon, 2012. "A New Model Of Trend Inflation," SIRE Discussion Papers 2012-12, Scottish Institute for Research in Economics (SIRE).
- Chan, Joshua & Koop, Gary & Potter, Simon, 2012. "A new model of trend inflation," MPRA Paper 39496, University Library of Munich, Germany.
- Chan, Joshua C.C., 2021.
"Minnesota-type adaptive hierarchical priors for large Bayesian VARs,"
International Journal of Forecasting, Elsevier, vol. 37(3), pages 1212-1226.
- Joshua C. C. Chan, 2019. "Minnesota-type adaptive hierarchical priors for large Bayesian VARs," CAMA Working Papers 2019-61, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.
- repec:ulb:ulbeco:2013/13388 is not listed on IDEAS
- Domenico Giannone & Michele Lenza & Giorgio E. Primiceri, 2015.
"Prior Selection for Vector Autoregressions,"
The Review of Economics and Statistics, MIT Press, vol. 97(2), pages 436-451, May.
- Giannone, Domenico & Lenza, Michele & Primiceri, Giorgio E., 2012. "Prior selection for vector autoregressions," Working Paper Series 1494, European Central Bank.
- Giannone, Domenico & Lenza, Michele & Primiceri, Giorgio, 2012. "Prior Selection for Vector Autoregressions," CEPR Discussion Papers 8755, C.E.P.R. Discussion Papers.
- Domenico Giannone & Michèle Lenza & Giorgio E. Primiceri, 2012. "Prior Selection for Vector Autoregressions," Working Papers ECARES ECARES 2012-002, ULB -- Universite Libre de Bruxelles.
- Domenico Giannone & Michele Lenza & Giorgio E. Primiceri, 2012. "Prior Selection for Vector Autoregressions," NBER Working Papers 18467, National Bureau of Economic Research, Inc.
- Florian Huber & Gary Koop & Luca Onorante, 2021.
"Inducing Sparsity and Shrinkage in Time-Varying Parameter Models,"
Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 39(3), pages 669-683, July.
- Huber, Florian & Koop, Gary & Onorante, Luca, 2019. "Inducing sparsity and shrinkage in time-varying parameter models," Working Paper Series 2325, European Central Bank.
- Huber, Florian & Koop, Gary & Onorante, Luca, 2019. "Inducing Sparsity and Shrinkage in Time-Varying Parameter Models," Working Papers in Economics 2019-2, University of Salzburg.
- Florian Huber & Gary Koop & Luca Onorante, 2019. "Inducing Sparsity and Shrinkage in Time-Varying Parameter Models," Papers 1905.10787, arXiv.org, revised Dec 2019.
- Knut Are Aastveit & Francesco Ravazzolo & Herman K. van Dijk, 2018.
"Combined Density Nowcasting in an Uncertain Economic Environment,"
Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 36(1), pages 131-145, January.
- Knut Are Aastveit & Francesco Ravazzolo & Herman K. van Dijk, 2014. "Combined Density Nowcasting in an uncertain economic environment," Working Paper 2014/17, Norges Bank.
- Knut Are Aastveit & Francesco Ravazzolo & Herman K. van Dijk, 2014. "Combined Density Nowcasting in an Uncertain Economic Environment," Tinbergen Institute Discussion Papers 14-152/III, Tinbergen Institute.
- Alipour, Panteha & Mukherjee, Sayanti & Nateghi, Roshanak, 2019. "Assessing climate sensitivity of peak electricity load for resilient power systems planning and operation: A study applied to the Texas region," Energy, Elsevier, vol. 185(C), pages 1143-1153.
- Marta Banbura & Domenico Giannone & Lucrezia Reichlin, 2010.
"Large Bayesian vector auto regressions,"
Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 25(1), pages 71-92.
- Reichlin, Lucrezia & Giannone, Domenico & Banbura, Marta, 2007. "Bayesian VARs with Large Panels," CEPR Discussion Papers 6326, C.E.P.R. Discussion Papers.
- Martha Banbura & Domenico Giannone & Lucrezia Reichlin, 2008. "Large Bayesian VARs," Working Papers ECARES 2008_033, ULB -- Universite Libre de Bruxelles.
- Marta Bańbura, 2008. "Large Bayesian VARs," 2008 Meeting Papers 334, Society for Economic Dynamics.
- Luc Bauwens & Michel Lubrano, 1998.
"Bayesian inference on GARCH models using the Gibbs sampler,"
Econometrics Journal, Royal Economic Society, vol. 1(Conferenc), pages 23-46.
- Bauwens, L. & Lubrano, M., 1996. "Bayesian Inference on GARCH Models Using the Gibbs Sampler," G.R.E.Q.A.M. 96a21, Universite Aix-Marseille III.
- Bauwens, L. & Lubrano, M., 1998. "Bayesian inference on GARCH models using the Gibbs sampler," LIDAM Reprints CORE 1307, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
- BAUWENs, Luc & LUBRANO , Michel, 1996. "Bayesian Inference on GARCH Models using the Gibbs Sampler," LIDAM Discussion Papers CORE 1996027, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
- Jia Liu & John M. Maheu, 2018.
"Improving Markov switching models using realized variance,"
Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 33(3), pages 297-318, April.
- Liu, Jia & Maheu, John M, 2015. "Improving Markov switching models using realized variance," MPRA Paper 71120, University Library of Munich, Germany.
- Jin, Xin & Maheu, John M. & Yang, Qiao, 2022. "Infinite Markov pooling of predictive distributions," Journal of Econometrics, Elsevier, vol. 228(2), pages 302-321.
- Lindberg, K.B. & Seljom, P. & Madsen, H. & Fischer, D. & Korpås, M., 2019. "Long-term electricity load forecasting: Current and future trends," Utilities Policy, Elsevier, vol. 58(C), pages 102-119.
- Frank Smets & Rafael Wouters, 2007.
"Shocks and Frictions in US Business Cycles: A Bayesian DSGE Approach,"
American Economic Review, American Economic Association, vol. 97(3), pages 586-606, June.
- Smets, Frank & Wouters, Raf, 2007. "Shocks and frictions in US business cycles: a Bayesian DSGE approach," Working Paper Series 722, European Central Bank.
- Smets, Frank & Wouters, Rafael, 2007. "Shocks and Frictions in US Business Cycles: A Bayesian DSGE Approach," CEPR Discussion Papers 6112, C.E.P.R. Discussion Papers.
- Frank Smets & Raf Wouters, 2007. "Shocks and Frictions in US Business Cycles : a Bayesian DSGE Approach," Working Paper Research 109, National Bank of Belgium.
- Korobilis, Dimitris & Koop, Gary, 2018.
"Variational Bayes inference in high-dimensional time-varying parameter models,"
Essex Finance Centre Working Papers
22665, University of Essex, Essex Business School.
- Gary Koop & Dimitris Korobilis, 2018. "Variational Bayes inference in high-dimensional time-varying parameter models," Working Paper series 18-31, Rimini Centre for Economic Analysis.
- Koop, Gary & Korobilis, Dimitris, 2018. "Variational Bayes inference in high-dimensional time-varying parameter models," MPRA Paper 87972, University Library of Munich, Germany.
- Anne Opschoor & Dick van Dijk & Michel van der Wel, 2017. "Combining density forecasts using focused scoring rules," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 32(7), pages 1298-1313, November.
- Ardia, David & Baştürk, Nalan & Hoogerheide, Lennart & van Dijk, Herman K., 2012.
"A comparative study of Monte Carlo methods for efficient evaluation of marginal likelihood,"
Computational Statistics & Data Analysis, Elsevier, vol. 56(11), pages 3398-3414.
- David Ardia & Nalan Basturk & Lennart Hoogerheide & Herman K. van Dijk, 2010. "A Comparative Study of Monte Carlo Methods for Efficient Evaluation of Marginal Likelihood," Tinbergen Institute Discussion Papers 10-059/4, Tinbergen Institute.
- Chib, Siddhartha & Greenberg, Edward, 1996.
"Markov Chain Monte Carlo Simulation Methods in Econometrics,"
Econometric Theory, Cambridge University Press, vol. 12(3), pages 409-431, August.
- Siddhartha Chib & Edward Greenberg, 1994. "Markov Chain Monte Carlo Simulation Methods in Econometrics," Econometrics 9408001, University Library of Munich, Germany, revised 23 Feb 1995.
- Roopesh Ranjan & Tilmann Gneiting, 2010. "Combining probability forecasts," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 72(1), pages 71-91, January.
- Train,Kenneth E., 2009.
"Discrete Choice Methods with Simulation,"
Cambridge Books,
Cambridge University Press, number 9780521766555.
- Train,Kenneth E., 2009. "Discrete Choice Methods with Simulation," Cambridge Books, Cambridge University Press, number 9780521747387, September.
- Kenneth Train, 2003. "Discrete Choice Methods with Simulation," Online economics textbooks, SUNY-Oswego, Department of Economics, number emetr2.
- Jacquier, Eric & Polson, Nicholas G & Rossi, Peter E, 1994. "Bayesian Analysis of Stochastic Volatility Models: Comments: Reply," Journal of Business & Economic Statistics, American Statistical Association, vol. 12(4), pages 413-417, October.
- Todd E. Clark, 2011.
"Real-Time Density Forecasts From Bayesian Vector Autoregressions With Stochastic Volatility,"
Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 29(3), pages 327-341, July.
- Clark, Todd E., 2011. "Real-Time Density Forecasts From Bayesian Vector Autoregressions With Stochastic Volatility," Journal of Business & Economic Statistics, American Statistical Association, vol. 29(3), pages 327-341.
- Paleti, Rajesh, 2018. "Generalized multinomial probit Model: Accommodating constrained random parameters," Transportation Research Part B: Methodological, Elsevier, vol. 118(C), pages 248-262.
- Worapree Maneesoonthorn & Catherine S. Forbes & Gael M. Martin, 2017.
"Inference on Self‐Exciting Jumps in Prices and Volatility Using High‐Frequency Measures,"
Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 32(3), pages 504-532, April.
- Worapree Maneesoonthorn & Catherine S. Forbes & Gael M. Martin, 2013. "Inference on Self-Exciting Jumps in Prices and Volatility using High Frequency Measures," Monash Econometrics and Business Statistics Working Papers 28/13, Monash University, Department of Econometrics and Business Statistics.
- Worapree Maneesoonthorn & Catherine S. Forbes & Gael M. Martin, 2014. "Inference on Self-Exciting Jumps in Prices and Volatility using High Frequency Measures," Monash Econometrics and Business Statistics Working Papers 30/14, Monash University, Department of Econometrics and Business Statistics.
- Worapree Maneesoonthorn & Catherine S. Forbes & Gael M. Martin, 2016. "Inference on Self-Exciting Jumps in Prices and Volatility using High Frequency Measures," Monash Econometrics and Business Statistics Working Papers 8/16, Monash University, Department of Econometrics and Business Statistics.
- Worapree Maneesoonthorn & Catherine S. Forbes & Gael M. Martin, 2014. "Inference on Self-Exciting Jumps in Prices and Volatility using High Frequency Measures," Papers 1401.3911, arXiv.org, revised Mar 2016.
- Jin, Xin & Maheu, John M., 2016.
"Bayesian semiparametric modeling of realized covariance matrices,"
Journal of Econometrics, Elsevier, vol. 192(1), pages 19-39.
- Jin, Xin & Maheu, John M, 2014. "Bayesian Semiparametric Modeling of Realized Covariance Matrices," MPRA Paper 60102, University Library of Munich, Germany.
- Xin Jin & John M. Maheu, 2014. "Bayesian Semiparametric Modeling of Realized Covariance Matrices," Working Paper series 34_14, Rimini Centre for Economic Analysis.
- James H. Stock & Mark W. Watson, 2007.
"Why Has U.S. Inflation Become Harder to Forecast?,"
Journal of Money, Credit and Banking, Blackwell Publishing, vol. 39(s1), pages 3-33, February.
- James H. Stock & Mark W. Watson, 2006. "Why Has U.S. Inflation Become Harder to Forecast?," NBER Working Papers 12324, National Bureau of Economic Research, Inc.
- repec:bla:jfinan:v:59:y:2004:i:3:p:1367-1404 is not listed on IDEAS
- David T. Frazier & Ruben Loaiza-Maya & Gael M. Martin, 2021.
"Variational Bayes in State Space Models: Inferential and Predictive Accuracy,"
Papers
2106.12262, arXiv.org, revised Feb 2022.
- David T. Frazier & Gael M. Martin & Ruben Loaiza-Maya, 2022. "Variational Bayes in State Space Models: Inferential and Predictive Accuracy," Monash Econometrics and Business Statistics Working Papers 1/22, Monash University, Department of Econometrics and Business Statistics.
- Todd E. Clark & Francesco Ravazzolo, 2015. "Macroeconomic Forecasting Performance under Alternative Specifications of Time‐Varying Volatility," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 30(4), pages 551-575, June.
- Z. I. Botev, 2017. "The normal law under linear restrictions: simulation and estimation via minimax tilting," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 79(1), pages 125-148, January.
- Andrea Carriero & Todd E. Clark & Massimiliano Marcellino, 2016.
"Common Drifting Volatility in Large Bayesian VARs,"
Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 34(3), pages 375-390, July.
- Marcellino, Massimiliano & Carriero, Andrea & Clark, Todd, 2012. "Common Drifting Volatility in Large Bayesian VARs," CEPR Discussion Papers 8894, C.E.P.R. Discussion Papers.
- Andrea CARRIERO & Todd E. CLARK & Massimiliano MARCELLINO, 2012. "Common Drifting Volatility in Large Bayesian VARs," Economics Working Papers ECO2012/08, European University Institute.
- Andrea Carriero & Todd E. Clark & Massimiliano Marcellino, 2012. "Common drifting volatility in large Bayesian VARs," Working Papers (Old Series) 1206, Federal Reserve Bank of Cleveland.
- Tristan Launay & Anne Philippe & Sophie Lamarche, 2015. "Construction of an informative hierarchical prior for a small sample with the help of historical data and application to electricity load forecasting," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 24(2), pages 361-385, June.
- McCulloch, Robert & Rossi, Peter E., 1994. "An exact likelihood analysis of the multinomial probit model," Journal of Econometrics, Elsevier, vol. 64(1-2), pages 207-240.
- Florian Huber & Martin Feldkircher, 2019.
"Adaptive Shrinkage in Bayesian Vector Autoregressive Models,"
Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 37(1), pages 27-39, January.
- Feldkircher, Martin & Huber, Florian, 2016. "Adaptive Shrinkage in Bayesian Vector Autoregressive Models," Department of Economics Working Paper Series 221, WU Vienna University of Economics and Business.
- Florian Huber & Martin Feldkircher, 2016. "Adaptive shrinkage in Bayesian vector autoregressive models," Department of Economics Working Papers wuwp221, Vienna University of Economics and Business, Department of Economics.
- Cottet R. & Smith M., 2003. "Bayesian Modeling and Forecasting of Intraday Electricity Load," Journal of the American Statistical Association, American Statistical Association, vol. 98, pages 839-849, January.
- Griffin, J.E. & Steel, M.F.J., 2011. "Stick-breaking autoregressive processes," Journal of Econometrics, Elsevier, vol. 162(2), pages 383-396, June.
- Gary Koop & Stuart McIntyre & James Mitchell & Aubrey Poon, 2020. "Regional output growth in the United Kingdom: More timely and higher frequency estimates from 1970," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 35(2), pages 176-197, March.
- Kostrzewski, Maciej & Kostrzewska, Jadwiga, 2019. "Probabilistic electricity price forecasting with Bayesian stochastic volatility models," Energy Economics, Elsevier, vol. 80(C), pages 610-620.
- Casarin, Roberto & Grassi, Stefano & Ravazzolo, Francesco & van Dijk, Herman K., 2015.
"Parallel Sequential Monte Carlo for Efficient Density Combination: The DeCo MATLAB Toolbox,"
Journal of Statistical Software, Foundation for Open Access Statistics, vol. 68(i03).
- Roberto Casarin & Stefano Grassi & Francesco Ravazzolo & Herman K. van Dijk, 2013. "Parallel Sequential Monte Carlo for Efficient Density Combination: The Deco Matlab Toolbox," Tinbergen Institute Discussion Papers 13-055/III, Tinbergen Institute, revised 16 Jan 2015.
- Roberto Casarin & Stefano Grassi & Francesco Ravazzolo & Herman K. van Dijk, 2013. "Parallel Sequential Monte Carlo for Efficient Density Combination: The Deco Matlab Toolbox," CREATES Research Papers 2013-09, Department of Economics and Business Economics, Aarhus University.
- Roberto Casarin & Stefano Grassi & Francesco Ravazzolo & Herman K. van Dijk, 2013. "Parallel Sequential Monte Carlo for Efficient Density Combination: The DeCo Matlab Toolbox," Working Papers 2013:08, Department of Economics, University of Venice "Ca' Foscari".
- Roberto Casarin & Stefano Grassi & Francesco Ravazzolo & Harman K. van Dijk, 2014. "Parallel sequential Monte Carlo for efficient density combination: The DeCo MATLAB toolbox," Working Paper 2014/11, Norges Bank.
- Xin Jin & John M. Maheu & Qiao Yang, 2019.
"Bayesian parametric and semiparametric factor models for large realized covariance matrices,"
Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 34(5), pages 641-660, August.
- Jin, Xin & Maheu, John M & Yang, Qiao, 2017. "Bayesian Parametric and Semiparametric Factor Models for Large Realized Covariance Matrices," MPRA Paper 81920, University Library of Munich, Germany.
- Xin Jin & John M. Maheu & Qiao Yang, 2018. "Bayesian Parametric and Semiparametric Factor Models for Large Realized Covariance Matrices," Working Paper series 18-02, Rimini Centre for Economic Analysis.
- Delatola, E.-I. & Griffin, J.E., 2013. "A Bayesian semiparametric model for volatility with a leverage effect," Computational Statistics & Data Analysis, Elsevier, vol. 60(C), pages 97-110.
- Giorgio E. Primiceri, 2005. "Time Varying Structural Vector Autoregressions and Monetary Policy," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 72(3), pages 821-852.
- P. G. Bissiri & C. C. Holmes & S. G. Walker, 2016. "A general framework for updating belief distributions," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 78(5), pages 1103-1130, November.
- Frank Schorfheide & Dongho Song, 2015.
"Real-Time Forecasting With a Mixed-Frequency VAR,"
Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 33(3), pages 366-380, July.
- Frank Schorfheide & Dongho Song, 2012. "Real-time forecasting with a mixed-frequency VAR," Working Papers 701, Federal Reserve Bank of Minneapolis.
- Frank Schorfheide & Dongho Song, 2013. "Real-Time Forecasting with a Mixed-Frequency VAR," NBER Working Papers 19712, National Bureau of Economic Research, Inc.
- Bollerslev, Tim & Chou, Ray Y. & Kroner, Kenneth F., 1992. "ARCH modeling in finance : A review of the theory and empirical evidence," Journal of Econometrics, Elsevier, vol. 52(1-2), pages 5-59.
- Pitt, Michael K. & Silva, Ralph dos Santos & Giordani, Paolo & Kohn, Robert, 2012. "On some properties of Markov chain Monte Carlo simulation methods based on the particle filter," Journal of Econometrics, Elsevier, vol. 171(2), pages 134-151.
- Koop, Gary & Korobilis, Dimitris, 2013.
"Large time-varying parameter VARs,"
Journal of Econometrics, Elsevier, vol. 177(2), pages 185-198.
- Koop, Gary & Korobilis, Dimitris, 2012. "Large time-varying parameter VARs," MPRA Paper 38591, University Library of Munich, Germany.
- Koop, Gary & Korobilis, Dimitris, 2012. "Large Time-Varying Parameter VARs," SIRE Discussion Papers 2012-14, Scottish Institute for Research in Economics (SIRE).
- Gary Koop & Dimitris Korobilis, 2012. "Large Time-Varying Parameter VARs," Working Paper series 11_12, Rimini Centre for Economic Analysis.
- Gary Koop & Dimitris Korobilis, 2012. "Large time-varying parameter VARs," Working Papers 2012_04, Business School - Economics, University of Glasgow.
- Hafner, Christian M. & Herwartz, Helmut, 2001.
"Option pricing under linear autoregressive dynamics, heteroskedasticity, and conditional leptokurtosis,"
Journal of Empirical Finance, Elsevier, vol. 8(1), pages 1-34, March.
- Hafner, Christian M. & Herwartz, Helmut, 1999. "Option pricing under linear autoregressive dynamics, heteroskedasticity, and conditional leptokurtosis," SFB 373 Discussion Papers 1999,58, Humboldt University of Berlin, Interdisciplinary Research Project 373: Quantification and Simulation of Economic Processes.
- Maneesoonthorn, Worapree & Martin, Gael M. & Forbes, Catherine S. & Grose, Simone D., 2012.
"Probabilistic forecasts of volatility and its risk premia,"
Journal of Econometrics, Elsevier, vol. 171(2), pages 217-236.
- Worapree Maneesoonthorn & Gael M. Martin & Catherine S. Forbes & Simone Grose, 2010. "Probabilistic Forecasts of Volatility and its Risk Premia," Monash Econometrics and Business Statistics Working Papers 22/10, Monash University, Department of Econometrics and Business Statistics.
- Chib, Siddhartha, 1996. "Calculating posterior distributions and modal estimates in Markov mixture models," Journal of Econometrics, Elsevier, vol. 75(1), pages 79-97, November.
- Lane F. Burgette & Erik V. Nordheim, 2012. "The Trace Restriction: An Alternative Identification Strategy for the Bayesian Multinomial Probit Model," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 30(3), pages 404-410, February.
- Flury, Thomas & Shephard, Neil, 2011.
"Bayesian Inference Based Only On Simulated Likelihood: Particle Filter Analysis Of Dynamic Economic Models,"
Econometric Theory, Cambridge University Press, vol. 27(5), pages 933-956, October.
- Thomas Flury & Neil Shephard, 2008. "Bayesian inference based only on simulated likelihood: particle filter analysis of dynamic economic models," OFRC Working Papers Series 2008fe32, Oxford Financial Research Centre.
- Wang, Siyan & Sun, Xun & Lall, Upmanu, 2017. "A hierarchical Bayesian regression model for predicting summer residential electricity demand across the U.S.A," Energy, Elsevier, vol. 140(P1), pages 601-611.
- M. P. Wand, 2017. "Fast Approximate Inference for Arbitrarily Large Semiparametric Regression Models via Message Passing," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 112(517), pages 137-168, January.
- Roberto Casarin & Giulia Mantoan & Francesco Ravazzolo, 2016. "Bayesian Calibration of Generalized Pools of Predictive Distributions," Econometrics, MDPI, vol. 4(1), pages 1-24, March.
- Kei Miyazaki & Takahiro Hoshino & Ulf Böckenholt, 2021. "Dynamic Two Stage Modeling for Category-Level and Brand-Level Purchases Using Potential Outcome Approach With Bayes Inference," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 39(3), pages 622-635, July.
- Niko Hauzenberger & Florian Huber & Luca Onorante, 2021.
"Combining shrinkage and sparsity in conjugate vector autoregressive models,"
Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 36(3), pages 304-327, April.
- Niko Hauzenberger & Florian Huber & Luca Onorante, 2020. "Combining Shrinkage and Sparsity in Conjugate Vector Autoregressive Models," Papers 2002.08760, arXiv.org, revised Aug 2020.
- Federico Bassetti & Roberto Casarin & Francesco Ravazzolo, 2018.
"Bayesian Nonparametric Calibration and Combination of Predictive Distributions,"
Journal of the American Statistical Association, Taylor & Francis Journals, vol. 113(522), pages 675-685, April.
- Federico Bassetti & Roberto Casarin & Francesco Ravazzolo, 2015. "Bayesian nonparametric calibration and combination of predictive distributions," Working Paper 2015/03, Norges Bank.
- Roberto Casarin & Federico Bassetti & Francesco Ravazzolo, 2015. "Bayesian Nonparametric Calibration and Combination of Predictive Distributions," Working Papers 2015:04, Department of Economics, University of Venice "Ca' Foscari".
- A. Doucet & M. K. Pitt & G. Deligiannidis & R. Kohn, 2015. "Efficient implementation of Markov chain Monte Carlo when using an unbiased likelihood estimator," Biometrika, Biometrika Trust, vol. 102(2), pages 295-313.
- McAlinn, Kenichiro & West, Mike, 2019. "Dynamic Bayesian predictive synthesis in time series forecasting," Journal of Econometrics, Elsevier, vol. 210(1), pages 155-169.
- Lahiri, Kajal & Gao, Jian, 2002.
"Bayesian analysis of nested logit model by Markov chain Monte Carlo,"
Journal of Econometrics, Elsevier, vol. 111(1), pages 103-133, November.
- Kajal Lahiri & Jian Gao, 2001. "Bayesian Analysis of Nested Logit Model by Markov Chain Monte Carlo," Discussion Papers 01-14, University at Albany, SUNY, Department of Economics.
- Lenza, Michele & Primiceri, Giorgio E., 2020.
"How to estimate a VAR after March 2020,"
Working Paper Series
2461, European Central Bank.
- Michele Lenza & Giorgio E. Primiceri, 2020. "How to Estimate a VAR after March 2020," NBER Working Papers 27771, National Bureau of Economic Research, Inc.
- Primiceri, Giorgio & Lenza, Michele, 2020. "How to Estimate a VAR after March 2020," CEPR Discussion Papers 15245, C.E.P.R. Discussion Papers.
- Benedetto Grillone & Gerard Mor & Stoyan Danov & Jordi Cipriano & Florencia Lazzari & Andreas Sumper, 2021. "Baseline Energy Use Modeling and Characterization in Tertiary Buildings Using an Interpretable Bayesian Linear Regression Methodology," Energies, MDPI, vol. 14(17), pages 1-30, September.
- Malin Adolfson & Jesper Linde & Mattias Villani, 2007. "Forecasting Performance of an Open Economy DSGE Model," Econometric Reviews, Taylor & Francis Journals, vol. 26(2-4), pages 289-328.
- David M. Blei & Alp Kucukelbir & Jon D. McAuliffe, 2017. "Variational Inference: A Review for Statisticians," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 112(518), pages 859-877, April.
- Loaiza-Maya, Rubén & Smith, Michael Stanley & Nott, David J. & Danaher, Peter J., 2022.
"Fast and accurate variational inference for models with many latent variables,"
Journal of Econometrics, Elsevier, vol. 230(2), pages 339-362.
- Rub'en Loaiza-Maya & Michael Stanley Smith & David J. Nott & Peter J. Danaher, 2020. "Fast and Accurate Variational Inference for Models with Many Latent Variables," Papers 2005.07430, arXiv.org, revised Apr 2021.
- James E. Johndrow & Aaron Smith & Natesh Pillai & David B. Dunson, 2019. "MCMC for Imbalanced Categorical Data," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 114(527), pages 1394-1403, July.
- Gael M. Martin & David T. Frazier & Christian P. Robert, 2022. "Computing Bayes: From Then `Til Now," Monash Econometrics and Business Statistics Working Papers 14/22, Monash University, Department of Econometrics and Business Statistics.
- Rubén Loaiza-Maya & Didier Nibbering, 2022. "Scalable Bayesian Estimation in the Multinomial Probit Model," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 40(4), pages 1678-1690, October.
- David J. Nott & Robert Kohn, 2005. "Adaptive sampling for Bayesian variable selection," Biometrika, Biometrika Trust, vol. 92(4), pages 747-763, December.
- Posch, Konstantin & Truden, Christian & Hungerländer, Philipp & Pilz, Jürgen, 2022. "A Bayesian approach for predicting food and beverage sales in staff canteens and restaurants," International Journal of Forecasting, Elsevier, vol. 38(1), pages 321-338.
- Matias Quiroz & Robert Kohn & Mattias Villani & Minh-Ngoc Tran, 2019.
"Speeding Up MCMC by Efficient Data Subsampling,"
Journal of the American Statistical Association, Taylor & Francis Journals, vol. 114(526), pages 831-843, April.
- Quiroz, Matias & Villani, Mattias & Kohn, Robert, 2015. "Speeding Up Mcmc By Efficient Data Subsampling," Working Paper Series 297, Sveriges Riksbank (Central Bank of Sweden).
- Kohn, Robert & Quiroz, Matias & Tran, Minh-Ngoc & Villani, Mattias, 2016. "Speeding up MCMC by Efficient Data Subsampling," Working Papers 2123/16205, University of Sydney Business School, Discipline of Business Analytics.
- Gunawan, David & Kohn, Robert & Nott, David, 2021. "Variational Bayes approximation of factor stochastic volatility models," International Journal of Forecasting, Elsevier, vol. 37(4), pages 1355-1375.
- Chiu, Ching-Wai (Jeremy) & Mumtaz, Haroon & Pintér, Gábor, 2017.
"Forecasting with VAR models: Fat tails and stochastic volatility,"
International Journal of Forecasting, Elsevier, vol. 33(4), pages 1124-1143.
- Chiu, Ching-Wai (Jeremy) & Mumtaz, Haroon & Pinter, Gabor, 2015. "Forecasting with VAR models: fat tails and stochastic volatility," Bank of England working papers 528, Bank of England.
- Ching-Wai (Jeremy) Chiu & Haroon Mumtaz & Gabor Pinter, 2015. "Forecasting with VAR Models: Fat Tails and Stochastic Volatility," CReMFi Discussion Papers 2, CReMFi, School of Economics and Finance, QMUL.
- Chib, Siddhartha, 1993. "Bayes regression with autoregressive errors : A Gibbs sampling approach," Journal of Econometrics, Elsevier, vol. 58(3), pages 275-294, August.
- Baştürk, N. & Borowska, A. & Grassi, S. & Hoogerheide, L. & van Dijk, H.K., 2019.
"Forecast density combinations of dynamic models and data driven portfolio strategies,"
Journal of Econometrics, Elsevier, vol. 210(1), pages 170-186.
- Nalan Basturk & Agnieszka Borowska & Stefano Grassi & Lennart (L.F.) Hoogerheide & Herman (H.K.) van Dijk, 2018. "Forecast Density Combinations of Dynamic Models and Data Driven Portfolio Strategies," Tinbergen Institute Discussion Papers 18-076/III, Tinbergen Institute.
- Nalan Basturk & Agnieszka Borowska & Stefano Grassi & Lennart Hoogerheide & Herman K. van Dijk, 2018. "Forecast Density Combinations of Dynamic Models and Data Driven Portfolio Strategies," Working Paper 2018/10, Norges Bank.
- Maria Kalli & Jim Griffin, 2015. "Flexible Modeling of Dependence in Volatility Processes," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 33(1), pages 102-113, January.
- Shuping Shi & Yong Song, 2016. "Identifying Speculative Bubbles Using an Infinite Hidden Markov Model," Journal of Financial Econometrics, Oxford University Press, vol. 14(1), pages 159-184.
- Todd E. Clark & Florian Huber & Gary Koop & Massimiliano Marcellino, 2022.
"Forecasting US Inflation Using Bayesian Nonparametric Models,"
Papers
2202.13793, arXiv.org.
- Todd E. Clark & Florian Huber & Gary Koop & Massimiliano Marcellino, 2022. "Forecasting US Inflation Using Bayesian Nonparametric Models," Working Papers 22-05, Federal Reserve Bank of Cleveland.
- Clark, Todd & Huber, Florian & Koop, Gary & Marcellino, Massimiliano, 2023. "Forecasting US Inflation Using Bayesian Nonparametric Models," CEPR Discussion Papers 18244, C.E.P.R. Discussion Papers.
- Frühwirth-Schnatter, Sylvia & Wagner, Helga, 2010. "Stochastic model specification search for Gaussian and partial non-Gaussian state space models," Journal of Econometrics, Elsevier, vol. 154(1), pages 85-100, January.
- Arnaud Dufays, 2016. "Infinite-State Markov-Switching for Dynamic Volatility," Journal of Financial Econometrics, Oxford University Press, vol. 14(2), pages 418-460.
- Smith, Michael, 2000. "Modeling and Short-term Forecasting of New South Wales Electricity System Load," Journal of Business & Economic Statistics, American Statistical Association, vol. 18(4), pages 465-478, October.
- Kloek, Tuen & van Dijk, Herman K, 1978.
"Bayesian Estimates of Equation System Parameters: An Application of Integration by Monte Carlo,"
Econometrica, Econometric Society, vol. 46(1), pages 1-19, January.
- Kloek, T. & van Dijk, H. K., 1976. "BAYESIAN ESTIMATES OF EQUATION SYSTEM PARAMETERS An Application of Integration by Monte Carlo," Econometric Institute Archives 272139, Erasmus University Rotterdam.
- Marta Banbura & Domenico Giannone & Lucrezia Reichlin, 2010.
"Large Bayesian vector auto regressions,"
Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 25(1), pages 71-92.
- Marta Bańbura & Domenico Giannone & Lucrezia Reichlin, 2010. "Large Bayesian vector auto regressions," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 25(1), pages 71-92, January.
- Antonio Bracale & Pasquale De Falco, 2015. "An Advanced Bayesian Method for Short-Term Probabilistic Forecasting of the Generation of Wind Power," Energies, MDPI, vol. 8(9), pages 1-22, September.
- Del Negro, Marco & Hasegawa, Raiden B. & Schorfheide, Frank, 2016.
"Dynamic prediction pools: An investigation of financial frictions and forecasting performance,"
Journal of Econometrics, Elsevier, vol. 192(2), pages 391-405.
- Marco Del Negro & Raiden B. Hasegawa & Frank Schorfheide, 2014. "Dynamic Prediction Pools: An Investigation of Financial Frictions and Forecasting Performance," NBER Working Papers 20575, National Bureau of Economic Research, Inc.
- Marco Del Negro & Raiden B. Hasegawa & Frank Schorfheide, 2014. "Dynamic Prediction Pools: An Investigation of Financial Frictions and Forecasting Performance," PIER Working Paper Archive 14-034, Penn Institute for Economic Research, Department of Economics, University of Pennsylvania.
- Marco Del Negro & Raiden B. Hasegawa & Frank Schorfheide, 2014. "Dynamic prediction pools: an investigation of financial frictions and forecasting performance," Staff Reports 695, Federal Reserve Bank of New York.
- Chib, Siddhartha & Nardari, Federico & Shephard, Neil, 2006. "Analysis of high dimensional multivariate stochastic volatility models," Journal of Econometrics, Elsevier, vol. 134(2), pages 341-371, October.
- Teh, Yee Whye & Jordan, Michael I. & Beal, Matthew J. & Blei, David M., 2006. "Hierarchical Dirichlet Processes," Journal of the American Statistical Association, American Statistical Association, vol. 101, pages 1566-1581, December.
- Asim Ansari & Yang Li & Jonathan Z. Zhang, 2018. "Probabilistic Topic Model for Hybrid Recommender Systems: A Stochastic Variational Bayesian Approach," Marketing Science, INFORMS, vol. 37(6), pages 987-1008, November.
- Frazier, David T. & Maneesoonthorn, Worapree & Martin, Gael M. & McCabe, Brendan P.M., 2019.
"Approximate Bayesian forecasting,"
International Journal of Forecasting, Elsevier, vol. 35(2), pages 521-539.
- David T. Frazier & Worapree Maneesoonthorn & Gael M. Martin & Brendan P.M. McCabe, 2018. "Approximate Bayesian forecasting," Monash Econometrics and Business Statistics Working Papers 2/18, Monash University, Department of Econometrics and Business Statistics.
- Peter E. Rossi & Greg M. Allenby, 2003. "Bayesian Statistics and Marketing," Marketing Science, INFORMS, vol. 22(3), pages 304-328, July.
- Niko Hauzenberger & Florian Huber & Gary Koop & Luca Onorante, 2022.
"Fast and Flexible Bayesian Inference in Time-varying Parameter Regression Models,"
Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 40(4), pages 1904-1918, October.
- Niko Hauzenberger & Florian Huber & Gary Koop & Luca Onorante, 2019. "Fast and Flexible Bayesian Inference in Time-varying Parameter Regression Models," Papers 1910.10779, arXiv.org, revised Sep 2021.
- Chan, Joshua C.C. & Eisenstat, Eric & Strachan, Rodney W., 2020. "Reducing the state space dimension in a large TVP-VAR," Journal of Econometrics, Elsevier, vol. 218(1), pages 105-118.
- Laurent E. Calvet & Veronika Czellar, 2015.
"Accurate Methods for Approximate Bayesian Computation Filtering,"
Journal of Financial Econometrics, Oxford University Press, vol. 13(4), pages 798-838.
- Laurent E. Calvet & Veronika Czellar, 2015. "Accurate Methods for Approximate Bayesian Computation Filtering," Post-Print hal-02313212, HAL.
- Hall, Stephen G. & Mitchell, James, 2007. "Combining density forecasts," International Journal of Forecasting, Elsevier, vol. 23(1), pages 1-13.
- Virbickaitė, Audronė & Ausín, M. Concepción & Galeano, Pedro, 2020. "Copula stochastic volatility in oil returns: Approximate Bayesian computation with volatility prediction," Energy Economics, Elsevier, vol. 92(C).
- Martina Danielova Zaharieva & Mark Trede & Bernd Wilfling, 2020. "Bayesian semiparametric multivariate stochastic volatility with application," Econometric Reviews, Taylor & Francis Journals, vol. 39(9), pages 947-970, October.
- Roshanak Nateghi & Seth D. Guikema & Steven M. Quiring, 2011. "Comparison and Validation of Statistical Methods for Predicting Power Outage Durations in the Event of Hurricanes," Risk Analysis, John Wiley & Sons, vol. 31(12), pages 1897-1906, December.
- Adedipe, Tosin & Shafiee, Mahmood & Zio, Enrico, 2020. "Bayesian Network Modelling for the Wind Energy Industry: An Overview," Reliability Engineering and System Safety, Elsevier, vol. 202(C).
- Håvard Rue & Sara Martino & Nicolas Chopin, 2009. "Approximate Bayesian inference for latent Gaussian models by using integrated nested Laplace approximations," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 71(2), pages 319-392, April.
- Sloughter, J. McLean & Gneiting, Tilmann & Raftery, Adrian E., 2010. "Probabilistic Wind Speed Forecasting Using Ensembles and Bayesian Model Averaging," Journal of the American Statistical Association, American Statistical Association, vol. 105(489), pages 25-35.
- Stroud J.R. & Muller P. & Polson N.G., 2003. "Nonlinear State-Space Models With State-Dependent Variances," Journal of the American Statistical Association, American Statistical Association, vol. 98, pages 377-386, January.
- Peng Sun & Inyoung Kim & Kiahm Lee, 2020. "Flexible weighted dirichlet process mixture modelling and evaluation to address the problem of forecasting return distribution," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 32(4), pages 989-1014, October.
- Omori, Yasuhiro & Chib, Siddhartha & Shephard, Neil & Nakajima, Jouchi, 2007. "Stochastic volatility with leverage: Fast and efficient likelihood inference," Journal of Econometrics, Elsevier, vol. 140(2), pages 425-449, October.
- repec:dau:papers:123456789/3549 is not listed on IDEAS
- Carriero, Andrea & Clark, Todd E. & Marcellino, Massimiliano, 2019. "Large Bayesian vector autoregressions with stochastic volatility and non-conjugate priors," Journal of Econometrics, Elsevier, vol. 212(1), pages 137-154.
- Beck, Roderick & Solow, John L, 1994. "Forecasting nuclear power supply with Bayesian autoregression," Energy Economics, Elsevier, vol. 16(3), pages 185-192, July.
- Nobuhiko Terui & Masataka Ban & Greg M. Allenby, 2011. "The Effect of Media Advertising on Brand Consideration and Choice," Marketing Science, INFORMS, vol. 30(1), pages 74-91, 01-02.
- Michael S. Johannes & Nicholas G. Polson & Jonathan R. Stroud, 2009. "Optimal Filtering of Jump Diffusions: Extracting Latent States from Asset Prices," The Review of Financial Studies, Society for Financial Studies, vol. 22(7), pages 2559-2599, July.
- Robert E. McCulloch & Ruey S. Tsay, 1994. "Bayesian Analysis Of Autoregressive Time Series Via The Gibbs Sampler," Journal of Time Series Analysis, Wiley Blackwell, vol. 15(2), pages 235-250, March.
- Fileccia, Gaetano & Sgarra, Carlo, 2018. "A particle filtering approach to oil futures price calibration and forecasting," Journal of Commodity Markets, Elsevier, vol. 9(C), pages 21-34.
- Bjørn Eraker & Michael Johannes & Nicholas Polson, 2003. "The Impact of Jumps in Volatility and Returns," Journal of Finance, American Finance Association, vol. 58(3), pages 1269-1300, June.
- Timothy J. Gilbride & Greg M. Allenby, 2004. "A Choice Model with Conjunctive, Disjunctive, and Compensatory Screening Rules," Marketing Science, INFORMS, vol. 23(3), pages 391-406, October.
- Yang, Qiao, 2019. "Stock returns and real growth: A Bayesian nonparametric approach," Journal of Empirical Finance, Elsevier, vol. 53(C), pages 53-69.
- Nicholas Syring & Ryan Martin, 2019. "Calibrating general posterior credible regions," Biometrika, Biometrika Trust, vol. 106(2), pages 479-486.
- Tilmann Gneiting & Fadoua Balabdaoui & Adrian E. Raftery, 2007. "Probabilistic forecasts, calibration and sharpness," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 69(2), pages 243-268, April.
- Shamsi Zamenjani, Azam, 2021. "Do financial variables help predict the conditional distribution of the market portfolio?," Journal of Empirical Finance, Elsevier, vol. 62(C), pages 327-345.
- Gneiting, Tilmann & Raftery, Adrian E., 2007. "Strictly Proper Scoring Rules, Prediction, and Estimation," Journal of the American Statistical Association, American Statistical Association, vol. 102, pages 359-378, March.
- Braun, Michael & McAuliffe, Jon, 2010. "Variational Inference for Large-Scale Models of Discrete Choice," Journal of the American Statistical Association, American Statistical Association, vol. 105(489), pages 324-335.
- Black, Fischer & Scholes, Myron S, 1973. "The Pricing of Options and Corporate Liabilities," Journal of Political Economy, University of Chicago Press, vol. 81(3), pages 637-654, May-June.
- George, Edward I. & Sun, Dongchu & Ni, Shawn, 2008. "Bayesian stochastic search for VAR model restrictions," Journal of Econometrics, Elsevier, vol. 142(1), pages 553-580, January.
- Jouchi Nakajima, 2017. "Bayesian analysis of multivariate stochastic volatility with skew return distribution," Econometric Reviews, Taylor & Francis Journals, vol. 36(5), pages 546-562, May.
- Kalli, Maria & Griffin, Jim E., 2018. "Bayesian nonparametric vector autoregressive models," Journal of Econometrics, Elsevier, vol. 203(2), pages 267-282.
- Eraker, Bjorn, 2001. "MCMC Analysis of Diffusion Models with Application to Finance," Journal of Business & Economic Statistics, American Statistical Association, vol. 19(2), pages 177-191, April.
- Yang, Yandong & Hong, Weijun & Li, Shufang, 2019. "Deep ensemble learning based probabilistic load forecasting in smart grids," Energy, Elsevier, vol. 189(C).
- Ormerod, J. T. & Wand, M. P., 2010. "Explaining Variational Approximations," The American Statistician, American Statistical Association, vol. 64(2), pages 140-153.
- Poirier, Dale J., 1996. "A Bayesian analysis of nested logit models," Journal of Econometrics, Elsevier, vol. 75(1), pages 163-181, November.
- S P Lyddon & C C Holmes & S G Walker, 2019. "General Bayesian updating and the loss-likelihood bootstrap," Biometrika, Biometrika Trust, vol. 106(2), pages 465-478.
- J. C. Naylor & A. F. M. Smith, 1982. "Applications of a Method for the Efficient Computation of Posterior Distributions," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 31(3), pages 214-225, November.
- Chib, Siddhartha & Nardari, Federico & Shephard, Neil, 2002. "Markov chain Monte Carlo methods for stochastic volatility models," Journal of Econometrics, Elsevier, vol. 108(2), pages 281-316, June.
- G. O. Roberts & S. K. Sahu, 1997. "Updating Schemes, Correlation Structure, Blocking and Parameterization for the Gibbs Sampler," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 59(2), pages 291-317.
- Fulop, Andras & Li, Junye, 2019. "Bayesian estimation of dynamic asset pricing models with informative observations," Journal of Econometrics, Elsevier, vol. 209(1), pages 114-138.
- George Deligiannidis & Arnaud Doucet & Michael K. Pitt, 2018. "The correlated pseudomarginal method," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 80(5), pages 839-870, November.
- Pierre E. Jacob & John O’Leary & Yves F. Atchadé, 2020. "Unbiased Markov chain Monte Carlo methods with couplings," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 82(3), pages 543-600, July.
- Gregor Kastner & Sylvia Fruhwirth-Schnatter & Hedibert Freitas Lopes, 2016. "Efficient Bayesian Inference for Multivariate Factor Stochastic Volatility Models," Papers 1602.08154, arXiv.org, revised Jul 2017.
- James H. Stock & Mark W. Watson, 2007. "Why Has U.S. Inflation Become Harder to Forecast?," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 39(s1), pages 3-33, February.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Martin, Gael M. & Frazier, David T. & Maneesoonthorn, Worapree & Loaiza-Maya, Rubén & Huber, Florian & Koop, Gary & Maheu, John & Nibbering, Didier & Panagiotelis, Anastasios, 2024.
"Bayesian forecasting in economics and finance: A modern review,"
International Journal of Forecasting, Elsevier, vol. 40(2), pages 811-839.
- Gael M. Martin & David T. Frazier & Worapree Maneesoonthorn & Ruben Loaiza-Maya & Florian Huber & Gary Koop & John Maheu & Didier Nibbering & Anastasios Panagiotelis, 2022. "Bayesian Forecasting in Economics and Finance: A Modern Review," Papers 2212.03471, arXiv.org, revised Jul 2023.
- Gael M. Martin & David T. Frazier & Christian P. Robert, 2020. "Computing Bayes: Bayesian Computation from 1763 to the 21st Century," Monash Econometrics and Business Statistics Working Papers 14/20, Monash University, Department of Econometrics and Business Statistics.
- Gael M. Martin & David T. Frazier & Christian P. Robert, 2021. "Approximating Bayes in the 21st Century," Monash Econometrics and Business Statistics Working Papers 24/21, Monash University, Department of Econometrics and Business Statistics.
- Joshua C.C. Chan & Rodney W. Strachan, 2023.
"Bayesian State Space Models In Macroeconometrics,"
Journal of Economic Surveys, Wiley Blackwell, vol. 37(1), pages 58-75, February.
- Joshua C.C. Chan & Rodney W. Strachan, 2020. "Bayesian state space models in macroeconometrics," CAMA Working Papers 2020-90, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.
- Hauzenberger, Niko & Huber, Florian & Klieber, Karin, 2023.
"Real-time inflation forecasting using non-linear dimension reduction techniques,"
International Journal of Forecasting, Elsevier, vol. 39(2), pages 901-921.
- Niko Hauzenberger & Florian Huber & Karin Klieber, 2020. "Real-time Inflation Forecasting Using Non-linear Dimension Reduction Techniques," Papers 2012.08155, arXiv.org, revised Dec 2021.
- Petropoulos, Fotios & Apiletti, Daniele & Assimakopoulos, Vassilios & Babai, Mohamed Zied & Barrow, Devon K. & Ben Taieb, Souhaib & Bergmeir, Christoph & Bessa, Ricardo J. & Bijak, Jakub & Boylan, Joh, 2022.
"Forecasting: theory and practice,"
International Journal of Forecasting, Elsevier, vol. 38(3), pages 705-871.
- Fotios Petropoulos & Daniele Apiletti & Vassilios Assimakopoulos & Mohamed Zied Babai & Devon K. Barrow & Souhaib Ben Taieb & Christoph Bergmeir & Ricardo J. Bessa & Jakub Bijak & John E. Boylan & Jet, 2020. "Forecasting: theory and practice," Papers 2012.03854, arXiv.org, revised Jan 2022.
- Chan, Joshua C.C., 2023.
"Comparing stochastic volatility specifications for large Bayesian VARs,"
Journal of Econometrics, Elsevier, vol. 235(2), pages 1419-1446.
- Joshua C. C. Chan, 2022. "Comparing Stochastic Volatility Specifications for Large Bayesian VARs," Papers 2208.13255, arXiv.org.
- Joshua Chan, 2023. "BVARs and Stochastic Volatility," Papers 2310.14438, arXiv.org.
- Chan, Joshua C.C. & Yu, Xuewen, 2022.
"Fast and Accurate Variational Inference for Large Bayesian VARs with Stochastic Volatility,"
Journal of Economic Dynamics and Control, Elsevier, vol. 143(C).
- Joshua C.C. Chan & Xuewen Yu, 2020. "Fast and accurate variational inference for large Bayesian VARs with stochastic volatility," CAMA Working Papers 2020-108, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.
- Joshua C. C. Chan & Xuewen Yu, 2022. "Fast and Accurate Variational Inference for Large Bayesian VARs with Stochastic Volatility," Papers 2206.08438, arXiv.org.
- Todd E. Clark & Florian Huber & Gary Koop & Massimiliano Marcellino & Michael Pfarrhofer, 2023.
"Tail Forecasting With Multivariate Bayesian Additive Regression Trees,"
International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 64(3), pages 979-1022, August.
- Todd E. Clark & Florian Huber & Gary Koop & Massimiliano Marcellino & Michael Pfarrhofer, 2021. "Tail Forecasting with Multivariate Bayesian Additive Regression Trees," Working Papers 21-08R, Federal Reserve Bank of Cleveland, revised 12 Jul 2022.
- Clark, Todd & Huber, Florian & Koop, Gary & Marcellino, Massimiliano & Pfarrhofer, Michael, 2022. "Tail Forecasting with Multivariate Bayesian Additive Regression Trees," CEPR Discussion Papers 17461, C.E.P.R. Discussion Papers.
- Nima Nonejad, 2021. "An Overview Of Dynamic Model Averaging Techniques In Time‐Series Econometrics," Journal of Economic Surveys, Wiley Blackwell, vol. 35(2), pages 566-614, April.
- Ruben Loaiza‐Maya & Gael M. Martin & David T. Frazier, 2021.
"Focused Bayesian prediction,"
Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 36(5), pages 517-543, August.
- Ruben Loaiza-Maya & Gael M. Martin & David T. Frazier, 2019. "Focused Bayesian Prediction," Papers 1912.12571, arXiv.org, revised Aug 2020.
- Ruben Loaiza-Maya & Gael M Martin & David T. Frazier, 2020. "Focused Bayesian Prediction," Monash Econometrics and Business Statistics Working Papers 1/20, Monash University, Department of Econometrics and Business Statistics.
- Martin, Gael M. & Loaiza-Maya, Rubén & Maneesoonthorn, Worapree & Frazier, David T. & Ramírez-Hassan, Andrés, 2022.
"Optimal probabilistic forecasts: When do they work?,"
International Journal of Forecasting, Elsevier, vol. 38(1), pages 384-406.
- Ruben Loaiza-Maya & Gael M. Martin & David T. Frazier & Worapree Maneesoonthorn & Andres Ramirez Hassan, 2020. "Optimal probabilistic forecasts: When do they work?," Monash Econometrics and Business Statistics Working Papers 33/20, Monash University, Department of Econometrics and Business Statistics.
- Gael M. Martin & Rub'en Loaiza-Maya & David T. Frazier & Worapree Maneesoonthorn & Andr'es Ram'irez Hassan, 2020. "Optimal probabilistic forecasts: When do they work?," Papers 2009.09592, arXiv.org.
- Chenghan Hou & Bao Nguyen & Bo Zhang, 2023. "Real‐time forecasting of the Australian macroeconomy using flexible Bayesian VARs," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 42(2), pages 418-451, March.
- Gael M. Martin & David T. Frazier & Christian P. Robert, 2022. "Computing Bayes: From Then `Til Now," Monash Econometrics and Business Statistics Working Papers 14/22, Monash University, Department of Econometrics and Business Statistics.
- Miranda-Agrippino, Silvia & Ricco, Giovanni, 2018.
"Bayesian Vector Autoregressions,"
The Warwick Economics Research Paper Series (TWERPS)
1159, University of Warwick, Department of Economics.
- Silvia Miranda Agrippino & Giovanni Ricco, 2018. "Bayesian vector autoregressions," Working Papers hal-03458277, HAL.
- Miranda-Agrippino, Silvia & Ricco, Giovanni, 2018. "Bayesian vector autoregressions," LSE Research Online Documents on Economics 87393, London School of Economics and Political Science, LSE Library.
- Silvia Miranda Agrippino & Giovanni Ricco, 2018. "Bayesian vector autoregressions," SciencePo Working papers Main hal-03458277, HAL.
- Miranda-Agrippino, Silvia & Ricco, Giovanni, 2018. "Bayesian vector autoregressions," Bank of England working papers 756, Bank of England.
- Silvia Miranda-Agrippino & Giovanni Ricco, 2018. "Bayesian vector autoregressions," Documents de Travail de l'OFCE 2018-18, Observatoire Francais des Conjonctures Economiques (OFCE).
- Silvia Miranda-Agrippino & Giovanni Ricco, 2018. "Bayesian Vector Autoregressions," Discussion Papers 1808, Centre for Macroeconomics (CFM).
- Cross, Jamie L. & Hou, Chenghan & Koop, Gary & Poon, Aubrey, 2023. "Large stochastic volatility in mean VARs," Journal of Econometrics, Elsevier, vol. 236(1).
- Chan, Joshua C.C., 2021.
"Minnesota-type adaptive hierarchical priors for large Bayesian VARs,"
International Journal of Forecasting, Elsevier, vol. 37(3), pages 1212-1226.
- Joshua C. C. Chan, 2019. "Minnesota-type adaptive hierarchical priors for large Bayesian VARs," CAMA Working Papers 2019-61, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.
- Barbara Rossi, 2019.
"Forecasting in the presence of instabilities: How do we know whether models predict well and how to improve them,"
Economics Working Papers
1711, Department of Economics and Business, Universitat Pompeu Fabra, revised Jul 2021.
- Barbara Rossi, 2019. "Forecasting in the Presence of Instabilities: How Do We Know Whether Models Predict Well and How to Improve Them," Working Papers 1162, Barcelona School of Economics.
- Rossi, Barbara, 2020. "Forecasting in the Presence of Instabilities: How Do We Know Whether Models Predict Well and How to Improve Them," CEPR Discussion Papers 14472, C.E.P.R. Discussion Papers.
- repec:hal:spmain:info:hdl:2441/27od5pb99881folvtfs8s3k16l is not listed on IDEAS
- repec:spo:wpmain:info:hdl:2441/27od5pb99881folvtfs8s3k16l is not listed on IDEAS
- Hauzenberger, Niko, 2021. "Flexible Mixture Priors for Large Time-varying Parameter Models," Econometrics and Statistics, Elsevier, vol. 20(C), pages 87-108.
More about this item
Keywords
Bayesian prediction; macroeconomics; finance; marketing; electricity demand; Bayesian computational methods; loss-based Bayesian prediction;All these keywords.
JEL classification:
- C01 - Mathematical and Quantitative Methods - - General - - - Econometrics
- C11 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Bayesian Analysis: General
- C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
NEP fields
This paper has been announced in the following NEP Reports:- NEP-CMP-2023-05-01 (Computational Economics)
- NEP-ECM-2023-05-01 (Econometrics)
- NEP-FOR-2023-05-01 (Forecasting)
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:msh:ebswps:2023-1. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Professor Xibin Zhang (email available below). General contact details of provider: https://edirc.repec.org/data/dxmonau.html .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.