Nothing Special   »   [go: up one dir, main page]

IDEAS home Printed from https://ideas.repec.org/p/msh/ebswps/2004-7.html
   My bibliography  Save this paper

Long term hedging of the Australian All Ordinaries Index using a bivariate error correction FIGARCH model

Author

Listed:
  • Jonathan Dark
Abstract
This article compares the performance of bivariate error correction GARCH and FIGARCH models when estimating long term dynamic minimum variance hedge ratios (MVHRs) on the Australian All Ordinaries Index. The paper therefore introduces the bivariate error correction FIGARCH model into the hedging literature, which to date has only employed the GARCH class of processes. This is important for those interested in managing long term equity exposures, given that FIGARCH processes exhibit long memory, whilst the GARCH class of processes exhibit short memory. The naïve hedge ratio, the constant MVHR estimated via ordinary least squares (the OLS MVHR), the single period dynamic MVHR and the multi-period dynamic MVHR of Lee (1999) are considered. The results strongly support the estimation of dynamic MVHRs that allow for time varying correlations. Whilst long memory dependencies appear important, a multi-period dynamic MVHR that responds more rapidly to persistent changes in volatility dynamics requires development.

Suggested Citation

  • Jonathan Dark, 2004. "Long term hedging of the Australian All Ordinaries Index using a bivariate error correction FIGARCH model," Monash Econometrics and Business Statistics Working Papers 7/04, Monash University, Department of Econometrics and Business Statistics.
  • Handle: RePEc:msh:ebswps:2004-7
    as

    Download full text from publisher

    File URL: http://www.buseco.monash.edu.au/ebs/pubs/wpapers/2004/wp7-04.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Brunetti, Celso & Gilbert, Christopher L., 2000. "Bivariate FIGARCH and fractional cointegration," Journal of Empirical Finance, Elsevier, vol. 7(5), pages 509-530, December.
    2. Cecchetti, Stephen G & Cumby, Robert E & Figlewski, Stephen, 1988. "Estimation of the Optimal Futures Hedge," The Review of Economics and Statistics, MIT Press, vol. 70(4), pages 623-630, November.
    3. Donald Lien & Yiu Kuen Tse, 1999. "Fractional cointegration and futures hedging," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 19(4), pages 457-474, June.
    4. Andersen, Torben G & Bollerslev, Tim, 1997. "Heterogeneous Information Arrivals and Return Volatility Dynamics: Uncovering the Long-Run in High Frequency Returns," Journal of Finance, American Finance Association, vol. 52(3), pages 975-1005, July.
    5. Zivot, Eric & Andrews, Donald W K, 2002. "Further Evidence on the Great Crash, the Oil-Price Shock, and the Unit-Root Hypothesis," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 25-44, January.
    6. Lobato, Ignacio N & Savin, N E, 1998. "Real and Spurious Long-Memory Properties of Stock-Market Data," Journal of Business & Economic Statistics, American Statistical Association, vol. 16(3), pages 261-268, July.
    7. Liu, Ming, 2000. "Modeling long memory in stock market volatility," Journal of Econometrics, Elsevier, vol. 99(1), pages 139-171, November.
    8. Baillie, Richard T & Myers, Robert J, 1991. "Bivariate GARCH Estimation of the Optimal Commodity Futures Hedge," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 6(2), pages 109-124, April-Jun.
    9. Ederington, Louis H, 1979. "The Hedging Performance of the New Futures Markets," Journal of Finance, American Finance Association, vol. 34(1), pages 157-170, March.
    10. Dacorogna, Michael M. & Muller, Ulrich A. & Nagler, Robert J. & Olsen, Richard B. & Pictet, Olivier V., 1993. "A geographical model for the daily and weekly seasonal volatility in the foreign exchange market," Journal of International Money and Finance, Elsevier, vol. 12(4), pages 413-438, August.
    11. Bollerslev, Tim, 1986. "Generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 31(3), pages 307-327, April.
    12. Bollerslev, Tim & Engle, Robert F & Wooldridge, Jeffrey M, 1988. "A Capital Asset Pricing Model with Time-Varying Covariances," Journal of Political Economy, University of Chicago Press, vol. 96(1), pages 116-131, February.
    13. Robert F. Engle & Kevin Sheppard, 2001. "Theoretical and Empirical properties of Dynamic Conditional Correlation Multivariate GARCH," NBER Working Papers 8554, National Bureau of Economic Research, Inc.
    14. Engle, Robert & Granger, Clive, 2015. "Co-integration and error correction: Representation, estimation, and testing," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 39(3), pages 106-135.
    15. Baillie, Richard T. & Bollerslev, Tim & Mikkelsen, Hans Ole, 1996. "Fractionally integrated generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 74(1), pages 3-30, September.
    16. Tse, Y. K., 2000. "A test for constant correlations in a multivariate GARCH model," Journal of Econometrics, Elsevier, vol. 98(1), pages 107-127, September.
    17. Kandice H. Kahl, 1983. "Determination of the Recommended Hedging Ratio," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 65(3), pages 603-605.
    18. Ding, Zhuanxin & Granger, Clive W. J., 1996. "Modeling volatility persistence of speculative returns: A new approach," Journal of Econometrics, Elsevier, vol. 73(1), pages 185-215, July.
    19. Baillie, Richard T., 1996. "Long memory processes and fractional integration in econometrics," Journal of Econometrics, Elsevier, vol. 73(1), pages 5-59, July.
    20. Gregory, Allan W. & Hansen, Bruce E., 1996. "Residual-based tests for cointegration in models with regime shifts," Journal of Econometrics, Elsevier, vol. 70(1), pages 99-126, January.
    21. Ramchand, Latha & Susmel, Raul, 1998. "Volatility and cross correlation across major stock markets," Journal of Empirical Finance, Elsevier, vol. 5(4), pages 397-416, October.
    22. Lo, Andrew W, 1991. "Long-Term Memory in Stock Market Prices," Econometrica, Econometric Society, vol. 59(5), pages 1279-1313, September.
    23. Tomislav Vukina & James L. Anderson, 1993. "A State-Space Forecasting Approach to Optimal Intertemporal Cross-Hedging," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 75(2), pages 416-424.
    24. Ding, Zhuanxin & Granger, Clive W. J. & Engle, Robert F., 1993. "A long memory property of stock market returns and a new model," Journal of Empirical Finance, Elsevier, vol. 1(1), pages 83-106, June.
    25. Robert J. Myers & Stanley R. Thompson, 1989. "Generalized Optimal Hedge Ratio Estimation," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 71(4), pages 858-868.
    26. Bollerslev, Tim & Ole Mikkelsen, Hans, 1996. "Modeling and pricing long memory in stock market volatility," Journal of Econometrics, Elsevier, vol. 73(1), pages 151-184, July.
    27. Lee, Tae-Hwy, 1994. "Spread and volatility in spot and forward exchange rates," Journal of International Money and Finance, Elsevier, vol. 13(3), pages 375-383, June.
    28. Kroner, Kenneth F. & Sultan, Jahangir, 1993. "Time-Varying Distributions and Dynamic Hedging with Foreign Currency Futures," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 28(4), pages 535-551, December.
    29. Granger, Clive W. J. & Ding, Zhuanxin, 1996. "Varieties of long memory models," Journal of Econometrics, Elsevier, vol. 73(1), pages 61-77, July.
    30. Andersen, Torben G. & Bollerslev, Tim, 1997. "Intraday periodicity and volatility persistence in financial markets," Journal of Empirical Finance, Elsevier, vol. 4(2-3), pages 115-158, June.
    31. Tae H. Park & Lorne N. Switzer, 1995. "Bivariate GARCH estimation of the optimal hedge ratios for stock index futures: A note," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 15(1), pages 61-67, February.
    32. Peter S. Sephton, 1993. "Optimal Hedge Ratios at the Winnipeg Commodity Exchange," Canadian Journal of Economics, Canadian Economics Association, vol. 26(1), pages 175-193, February.
    33. Gregory, Allan W & Hansen, Bruce E, 1996. "Tests for Cointegration in Models with Regime and Trend Shifts," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 58(3), pages 555-560, August.
    34. Carmelo Giaccotto & Shantaram P. Hegde & John B. McDermott, 2001. "Hedging multiple price and quantity exposures," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 21(2), pages 145-172, February.
    35. Breidt, F. Jay & Crato, Nuno & de Lima, Pedro, 1998. "The detection and estimation of long memory in stochastic volatility," Journal of Econometrics, Elsevier, vol. 83(1-2), pages 325-348.
    36. Gagnon, Louis & Lypny, Gregory J. & McCurdy, Thomas H., 1998. "Hedging foreign currency portfolios," Journal of Empirical Finance, Elsevier, vol. 5(3), pages 197-220, September.
    37. repec:bla:jfinan:v:53:y:1998:i:1:p:219-265 is not listed on IDEAS
    38. Yen‐Ju Chen & Jin‐Chuan Duan & Mao‐Wei Hung, 1999. "Volatility and maturity effects in the Nikkei index futures," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 19(8), pages 895-909, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jonathan Dark, 2004. "Bivariate error correction FIGARCH and FIAPARCH models on the Australian All Ordinaries Index and its SPI futures," Monash Econometrics and Business Statistics Working Papers 4/04, Monash University, Department of Econometrics and Business Statistics.
    2. Jonathan Dark, 2004. "Long memory in the volatility of the Australian All Ordinaries Index and the Share Price Index futures," Monash Econometrics and Business Statistics Working Papers 5/04, Monash University, Department of Econometrics and Business Statistics.
    3. John Cotter & Simon Stevenson, 2008. "Modeling Long Memory in REITs," Real Estate Economics, American Real Estate and Urban Economics Association, vol. 36(3), pages 533-554, September.
    4. Dark Jonathan Graeme, 2010. "Estimation of Time Varying Skewness and Kurtosis with an Application to Value at Risk," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 14(2), pages 1-50, March.
    5. Degiannakis, Stavros & Xekalaki, Evdokia, 2004. "Autoregressive Conditional Heteroskedasticity (ARCH) Models: A Review," MPRA Paper 80487, University Library of Munich, Germany.
    6. Charfeddine, Lanouar & Ajmi, Ahdi Noomen, 2013. "The Tunisian stock market index volatility: Long memory vs. switching regime," Emerging Markets Review, Elsevier, vol. 16(C), pages 170-182.
    7. Abderrazak Ben Maatoug & Rim Lamouchi & Russell Davidson & Ibrahim Fatnassi, 2018. "Modelling Foreign Exchange Realized Volatility Using High Frequency Data: Long Memory versus Structural Breaks," Central European Journal of Economic Modelling and Econometrics, Central European Journal of Economic Modelling and Econometrics, vol. 10(1), pages 1-25, March.
    8. Maheu John, 2005. "Can GARCH Models Capture Long-Range Dependence?," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 9(4), pages 1-43, December.
    9. Michael S. Haigh & Matthew T. Holt, 2002. "Combining time-varying and dynamic multi-period optimal hedging models," European Review of Agricultural Economics, Oxford University Press and the European Agricultural and Applied Economics Publications Foundation, vol. 29(4), pages 471-500, December.
    10. Ana Pérez & Esther Ruiz, 2002. "Modelos de memoria larga para series económicas y financieras," Investigaciones Economicas, Fundación SEPI, vol. 26(3), pages 395-445, September.
    11. Morana, Claudio & Beltratti, Andrea, 2004. "Structural change and long-range dependence in volatility of exchange rates: either, neither or both?," Journal of Empirical Finance, Elsevier, vol. 11(5), pages 629-658, December.
    12. Kunal Saha & Vinodh Madhavan & Chandrashekhar G. R. & David McMillan, 2020. "Pitfalls in long memory research," Cogent Economics & Finance, Taylor & Francis Journals, vol. 8(1), pages 1733280-173, January.
    13. Dark, Jonathan, 2015. "Futures hedging with Markov switching vector error correction FIEGARCH and FIAPARCH," Journal of Banking & Finance, Elsevier, vol. 61(S2), pages 269-285.
    14. Michael S. Haigh & Matthew T. Holt, 2002. "Crack spread hedging: accounting for time-varying volatility spillovers in the energy futures markets," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 17(3), pages 269-289.
    15. Dark, Jonathan, 2018. "Multivariate models with long memory dependence in conditional correlation and volatility," Journal of Empirical Finance, Elsevier, vol. 48(C), pages 162-180.
    16. Gil-Alana, Luis A. & Shittu, Olanrewaju I. & Yaya, OlaOluwa S., 2014. "On the persistence and volatility in European, American and Asian stocks bull and bear markets," Journal of International Money and Finance, Elsevier, vol. 40(C), pages 149-162.
    17. Kim Liow, 2009. "Long-term Memory in Volatility: Some Evidence from International Securitized Real Estate Markets," The Journal of Real Estate Finance and Economics, Springer, vol. 39(4), pages 415-438, November.
    18. Jonathan Wright, 2002. "Log-Periodogram Estimation Of Long Memory Volatility Dependencies With Conditionally Heavy Tailed Returns," Econometric Reviews, Taylor & Francis Journals, vol. 21(4), pages 397-417.
    19. An-Sing Chen & Yan-Zhen Liu, 2008. "Enhancing hedging performance with the spanning polynomial projection," Quantitative Finance, Taylor & Francis Journals, vol. 8(6), pages 605-617.
    20. Caporin, Massimiliano & Ranaldo, Angelo & Santucci de Magistris, Paolo, 2013. "On the predictability of stock prices: A case for high and low prices," Journal of Banking & Finance, Elsevier, vol. 37(12), pages 5132-5146.

    More about this item

    Keywords

    Long memory; bivariate FIGARCH; time varying correlations; multi period minimum variance hedge ratios.;
    All these keywords.

    JEL classification:

    • G0 - Financial Economics - - General
    • G15 - Financial Economics - - General Financial Markets - - - International Financial Markets

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:msh:ebswps:2004-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Professor Xibin Zhang (email available below). General contact details of provider: https://edirc.repec.org/data/dxmonau.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.