Nothing Special   »   [go: up one dir, main page]

IDEAS home Printed from https://ideas.repec.org/p/mlb/wpaper/787.html
   My bibliography  Save this paper

Stochastic Growth: Asymptotic Distributions

Author

Listed:
  • Stachurski, J.
Abstract
This note studies conditions under which sequences of capital per head generated by stochastic optimal accumulation models have law of large numbers and central limit properties. The regularity condition used on the productivity shock is somewhat different to that of previous studies. In particular, no restrictions are placed on its support. Instead, an "average contraction" property is required on the law of motion.

Suggested Citation

  • Stachurski, J., 2001. "Stochastic Growth: Asymptotic Distributions," Department of Economics - Working Papers Series 787, The University of Melbourne.
  • Handle: RePEc:mlb:wpaper:787
    as

    Download full text from publisher

    File URL: http://www.economics.unimelb.edu.au/downloads/wpapers-00-01/787.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Flam, S.D. & Evstigneev, I.V., 1997. "The Turnpike Property and the Central Limit Theorem in Stochastic Models of Economic Dynamics," Norway; Department of Economics, University of Bergen 171, Department of Economics, University of Bergen.
    2. William A. Brock & Leonard J. Mirman, 2001. "Optimal Economic Growth And Uncertainty: The Discounted Case," Chapters, in: W. D. Dechert (ed.), Growth Theory, Nonlinear Dynamics and Economic Modelling, chapter 1, pages 3-37, Edward Elgar Publishing.
    3. Stachurski, J., 2001. "Log-Linearization of Perturbed Dynamical Systems, With Applications to Optimal Growth," Department of Economics - Working Papers Series 788, The University of Melbourne.
    4. Binder, M. & Pesaran, M.H., 1996. "Stochastic Growth," Cambridge Working Papers in Economics 9615, Faculty of Economics, University of Cambridge.
    5. Bhattacharya, Rabi & Majumdar, Mukul, 2001. "On a Class of Stable Random Dynamical Systems: Theory and Applications," Journal of Economic Theory, Elsevier, vol. 96(1-2), pages 208-229, January.
    6. Mirman, Leonard J. & Zilcha, Itzhak, 1975. "On optimal growth under uncertainty," Journal of Economic Theory, Elsevier, vol. 11(3), pages 329-339, December.
    7. Stachurski, John, 2002. "Stochastic Optimal Growth with Unbounded Shock," Journal of Economic Theory, Elsevier, vol. 106(1), pages 40-65, September.
    8. Mirman, Leonard J., 1973. "The steady state behavior of a class of one sector growth models with uncertain technology," Journal of Economic Theory, Elsevier, vol. 6(3), pages 219-242, June.
    9. repec:rus:cemicf:358 is not listed on IDEAS
    10. Binder, Michael & Pesaran, M Hashem, 1999. "Stochastic Growth Models and Their Econometric Implications," Journal of Economic Growth, Springer, vol. 4(2), pages 139-183, June.
    11. Amir, R. & Evstigneev, I. V., 2000. "A functional central limit theorem for equilibrium paths of economic dynamics," Journal of Mathematical Economics, Elsevier, vol. 33(1), pages 81-99, February.
    12. Mirman, Leonard J, 1972. "On the Existence of Steady State Measures for One Sector Growth Models with Uncertain Technology," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 13(2), pages 271-286, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. John Stachurski, 2004. "Asymptotic Statistical Properties Of The Neoclassical Optimal Growth Model," Department of Economics - Working Papers Series 898, The University of Melbourne.
    2. Lars J. Olson & Santanu Roy, 2006. "Theory of Stochastic Optimal Economic Growth," Springer Books, in: Rose-Anne Dana & Cuong Le Van & Tapan Mitra & Kazuo Nishimura (ed.), Handbook on Optimal Growth 1, chapter 11, pages 297-335, Springer.
    3. Kazuo Nishimura & John Stachurski, 2012. "Stability of Stochastic Optimal Growth Models: A New Approach," Springer Books, in: John Stachurski & Alain Venditti & Makoto Yano (ed.), Nonlinear Dynamics in Equilibrium Models, edition 127, chapter 0, pages 289-307, Springer.
    4. Juan R. A. Bobenrieth & Eugenio S. A. Bobenrieth & Andrés F. Villegas & Brian D. Wright, 2022. "Estimation of Endogenous Volatility Models with Exponential Trends," Mathematics, MDPI, vol. 10(15), pages 1-27, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Stachurski, John, 2002. "Stochastic Optimal Growth with Unbounded Shock," Journal of Economic Theory, Elsevier, vol. 106(1), pages 40-65, September.
    2. John Stachurski, 2004. "Asymptotic Statistical Properties Of The Neoclassical Optimal Growth Model," Department of Economics - Working Papers Series 898, The University of Melbourne.
    3. John Stachurski, 2009. "Economic Dynamics: Theory and Computation," MIT Press Books, The MIT Press, edition 1, volume 1, number 0262012774, April.
    4. Kazuo Nishimura & John Stachurski, 2012. "Stability of Stochastic Optimal Growth Models: A New Approach," Springer Books, in: John Stachurski & Alain Venditti & Makoto Yano (ed.), Nonlinear Dynamics in Equilibrium Models, edition 127, chapter 0, pages 289-307, Springer.
    5. Stachurski, J., 2001. "Log-Linearization of Perturbed Dynamical Systems, With Applications to Optimal Growth," Department of Economics - Working Papers Series 788, The University of Melbourne.
    6. Bishnu, Monisankar, 2010. "Essays on optimal allocation of resources by governments," ISU General Staff Papers 201001010800002441, Iowa State University, Department of Economics.
    7. Zhang, Yuzhe, 2007. "Stochastic optimal growth with a non-compact state space," Journal of Mathematical Economics, Elsevier, vol. 43(2), pages 115-129, February.
    8. Juan Pablo Rinc'on-Zapatero, 2019. "Existence and Uniqueness of Solutions to the Stochastic Bellman Equation with Unbounded Shock," Papers 1907.07343, arXiv.org.
    9. Graeme Wells & Thanasis Stengos, 2010. "Estimates of Technology and Convergence: Simulation Results," Ekonomia, Cyprus Economic Society and University of Cyprus, vol. 13(2-1), pages 97-108, Winter-Su.
    10. Rincón-Zapatero, Juan Pablo, 2022. "Existence and uniqueness of solutions to the Bellman equation in stochastic dynamic programming," UC3M Working papers. Economics 35342, Universidad Carlos III de Madrid. Departamento de Economía.
    11. Tapan Mitra & Luigi Montrucchio & Fabio Privileggi, 2003. "The nature of the steady state in models of optimal growth under uncertainty," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 23(1), pages 39-71, December.
    12. Koulovatianos, Christos & Mirman, Leonard J. & Santugini, Marc, 2009. "Optimal growth and uncertainty: Learning," Journal of Economic Theory, Elsevier, vol. 144(1), pages 280-295, January.
    13. Carter, Patrick, 2017. "Aid econometrics: Lessons from a stochastic growth model," Journal of International Money and Finance, Elsevier, vol. 77(C), pages 216-232.
    14. Takashi Kamihigashiw & John Stachurski, 2014. "Seeking Ergodicity in Dynamic Economies," Working Papers 2014-402, Department of Research, Ipag Business School.
    15. Flam, Sjur Didrik & Mirman, Leonard J., 1998. "Groping for optimal growth," Journal of Economic Dynamics and Control, Elsevier, vol. 23(2), pages 191-207, September.
    16. Mitra, Tapan & Roy, Santanu, 2017. "Optimality of Ramsey–Euler policy in the stochastic growth model," Journal of Economic Theory, Elsevier, vol. 172(C), pages 1-25.
    17. Klaus Schenk-Hoppé, 2002. "Sample-Path Stability of Non-Stationary Dynamic Economic Systems," Annals of Operations Research, Springer, vol. 114(1), pages 263-280, August.
    18. Mitra, Tapan & Privileggi, Fabio, 2006. "Cantor type attractors in stochastic growth models," Chaos, Solitons & Fractals, Elsevier, vol. 29(3), pages 626-637.
    19. Amir, Rabah, 1997. "A new look at optimal growth under uncertainty," Journal of Economic Dynamics and Control, Elsevier, vol. 22(1), pages 67-86, November.
    20. Cai, Yiyong & Kamihigashi, Takashi & Stachurski, John, 2014. "Stochastic optimal growth with risky labor supply," Journal of Mathematical Economics, Elsevier, vol. 50(C), pages 167-176.

    More about this item

    Keywords

    CAPITAL ; PRODUCTIVITY ; ECONOMIC MODELS;
    All these keywords.

    JEL classification:

    • C51 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Construction and Estimation
    • C62 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Existence and Stability Conditions of Equilibrium
    • O41 - Economic Development, Innovation, Technological Change, and Growth - - Economic Growth and Aggregate Productivity - - - One, Two, and Multisector Growth Models

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:mlb:wpaper:787. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Dandapani Lokanathan (email available below). General contact details of provider: https://edirc.repec.org/data/demelau.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.