Nothing Special   »   [go: up one dir, main page]

IDEAS home Printed from https://ideas.repec.org/p/ifs/cemmap/25-18.html
   My bibliography  Save this paper

Simultaneous mean-variance regression

Author

Listed:
  • Richard Spady

    (Institute for Fiscal Studies and Johns Hopkins)

  • Sami Stouli

    (Institute for Fiscal Studies and University of Bristol)

Abstract
We propose simultaneous mean-variance regression for the linear estimation and approximation of conditional mean functions. In the presence of heteroskedasticity of unknown form, our method accounts for varying dispersion in the regression outcome across the support of conditioning variables by using weights that are jointly determined with mean regression parameters. Simultaneity generates outcome predictions that are guaranteed to improve over ordinary least-squares prediction error, with corresponding parameter standard errors that are automatically valid. Under shape misspecification of the conditional mean and variance functions, we establish existence and uniqueness of the resulting approximations and characterize their formal interpretation. We illustrate our method with numerical simulations and two empirical applications to the estimation of the relationship between economic prosperity in 1500 and today, and demand for gasoline in the United States.

Suggested Citation

  • Richard Spady & Sami Stouli, 2018. "Simultaneous mean-variance regression," CeMMAP working papers CWP25/18, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
  • Handle: RePEc:ifs:cemmap:25/18
    as

    Download full text from publisher

    File URL: https://www.ifs.org.uk/uploads/CWP251818.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Chesher, Andrew & Austin, Gerard, 1991. "The finite-sample distributions of heteroskedasticity robust Wald statistics," Journal of Econometrics, Elsevier, vol. 47(1), pages 153-173, January.
    2. Tripathi, Gautam, 1999. "A matrix extension of the Cauchy-Schwarz inequality," Economics Letters, Elsevier, vol. 63(1), pages 1-3, April.
    3. Jeffrey M Wooldridge, 2010. "Econometric Analysis of Cross Section and Panel Data," MIT Press Books, The MIT Press, edition 2, volume 1, number 0262232588, April.
    4. Daron Acemoglu & Simon Johnson & James A. Robinson, 2002. "Reversal of Fortune: Geography and Institutions in the Making of the Modern World Income Distribution," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 117(4), pages 1231-1294.
    5. Richard Blundell & Joel L. Horowitz & Matthias Parey, 2012. "Measuring the price responsiveness of gasoline demand: Economic shape restrictions and nonparametric demand estimation," Quantitative Economics, Econometric Society, vol. 3(1), pages 29-51, March.
    6. R H Spady & S Stouli, 2018. "Dual regression," Biometrika, Biometrika Trust, vol. 105(1), pages 1-18.
    7. Adonis Yatchew & Joungyeo Angela No, 2001. "Household Gasoline Demand in Canada," Econometrica, Econometric Society, vol. 69(6), pages 1697-1709, November.
    8. West, Sarah E., 2004. "Distributional effects of alternative vehicle pollution control policies," Journal of Public Economics, Elsevier, vol. 88(3-4), pages 735-757, March.
    9. White, Halbert, 1980. "Using Least Squares to Approximate Unknown Regression Functions," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 21(1), pages 149-170, February.
    10. White, Halbert, 1982. "Maximum Likelihood Estimation of Misspecified Models," Econometrica, Econometric Society, vol. 50(1), pages 1-25, January.
    11. Chesher, Andrew, 1989. "Hajek Inequalities, Measures of Leverage and the Size of Heteroskedasticity Robust Wald Tests," Econometrica, Econometric Society, vol. 57(4), pages 971-977, July.
    12. White, Halbert, 1980. "A Heteroskedasticity-Consistent Covariance Matrix Estimator and a Direct Test for Heteroskedasticity," Econometrica, Econometric Society, vol. 48(4), pages 817-838, May.
    13. Chesher, Andrew & Jewitt, Ian, 1987. "The Bias of a Heteroskedasticity Consistent Covariance Matrix Estimator," Econometrica, Econometric Society, vol. 55(5), pages 1217-1222, September.
    14. MacKinnon, James G. & White, Halbert, 1985. "Some heteroskedasticity-consistent covariance matrix estimators with improved finite sample properties," Journal of Econometrics, Elsevier, vol. 29(3), pages 305-325, September.
    15. Breusch, T S & Pagan, A R, 1979. "A Simple Test for Heteroscedasticity and Random Coefficient Variation," Econometrica, Econometric Society, vol. 47(5), pages 1287-1294, September.
    16. Romano, Joseph P. & Wolf, Michael, 2017. "Resurrecting weighted least squares," Journal of Econometrics, Elsevier, vol. 197(1), pages 1-19.
    17. Koenker, Roger, 1981. "A note on studentizing a test for heteroscedasticity," Journal of Econometrics, Elsevier, vol. 17(1), pages 107-112, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chaudhuri, Saraswata & Renault, Eric, 2023. "Efficient estimation of regression models with user-specified parametric model for heteroskedasticty," The Warwick Economics Research Paper Series (TWERPS) 1473, University of Warwick, Department of Economics.
    2. Timo Dimitriadis & Tobias Fissler & Johanna Ziegel, 2020. "The Efficiency Gap," Papers 2010.14146, arXiv.org, revised Sep 2022.
    3. Philippe Goulet Coulombe, 2022. "A Neural Phillips Curve and a Deep Output Gap," Working Papers 22-01, Chair in macroeconomics and forecasting, University of Quebec in Montreal's School of Management.
    4. Richard Spady & Sami Stouli, 2020. "Gaussian Transforms Modeling and the Estimation of Distributional Regression Functions," Papers 2011.06416, arXiv.org.
    5. Philippe Goulet Coulombe, 2022. "A Neural Phillips Curve and a Deep Output Gap," Papers 2202.04146, arXiv.org, revised Oct 2024.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pötscher, Benedikt M. & Preinerstorfer, David, 2021. "Valid Heteroskedasticity Robust Testing," MPRA Paper 107420, University Library of Munich, Germany.
    2. Romano, Joseph P. & Wolf, Michael, 2017. "Resurrecting weighted least squares," Journal of Econometrics, Elsevier, vol. 197(1), pages 1-19.
    3. Pötscher, Benedikt M. & Preinerstorfer, David, 2023. "How Reliable Are Bootstrap-Based Heteroskedasticity Robust Tests?," Econometric Theory, Cambridge University Press, vol. 39(4), pages 789-847, August.
    4. MacKinnon, James G, 1992. "Model Specification Tests and Artificial Regressions," Journal of Economic Literature, American Economic Association, vol. 30(1), pages 102-146, March.
    5. Michael O'Hara & Christopher F. Parmeter, 2013. "Nonparametric Generalized Least Squares in Applied Regression Analysis," Pacific Economic Review, Wiley Blackwell, vol. 18(4), pages 456-474, October.
    6. Alberto Abadie & Susan Athey & Guido W. Imbens & Jeffrey M. Wooldridge, 2017. "Sampling-based vs. Design-based Uncertainty in Regression Analysis," Papers 1706.01778, arXiv.org, revised Jun 2019.
    7. Eric S. Lin & Ta-Sheng Chou, 2018. "Finite-sample refinement of GMM approach to nonlinear models under heteroskedasticity of unknown form," Econometric Reviews, Taylor & Francis Journals, vol. 37(1), pages 1-28, January.
    8. Sin, C.Y. (Chor-yiu) & Lee, Cheng-Few, 2021. "Using heteroscedasticity-non-consistent or heteroscedasticity-consistent variances in linear regression," Econometrics and Statistics, Elsevier, vol. 18(C), pages 117-142.
    9. J. Scott Long & Pravin K. Trivedi, 1992. "Some Specification Tests for the Linear Regression Model," Sociological Methods & Research, , vol. 21(2), pages 161-204, November.
    10. James G. MacKinnon, 2012. "Thirty Years Of Heteroskedasticity-robust Inference," Working Paper 1268, Economics Department, Queen's University.
    11. Alberto Abadie & Susan Athey & Guido W. Imbens & Jeffrey M. Wooldridge, 2020. "Sampling‐Based versus Design‐Based Uncertainty in Regression Analysis," Econometrica, Econometric Society, vol. 88(1), pages 265-296, January.
    12. Antoine, Bertille & Lavergne, Pascal, 2023. "Identification-robust nonparametric inference in a linear IV model," Journal of Econometrics, Elsevier, vol. 235(1), pages 1-24.
    13. Psaradakis, Zacharias & Sola, Martin, 1996. "On the power of tests for superexogeneity and structural invariance," Journal of Econometrics, Elsevier, vol. 72(1-2), pages 151-175.
    14. Katarzyna Jabłońska, 2018. "Dealing With Heteroskedasticity Within The Modeling Of The Quality Of Life Of Older People," Statistics in Transition New Series, Polish Statistical Association, vol. 19(3), pages 423-452, September.
    15. Dufour, Jean-Marie & Khalaf, Lynda & Bernard, Jean-Thomas & Genest, Ian, 2004. "Simulation-based finite-sample tests for heteroskedasticity and ARCH effects," Journal of Econometrics, Elsevier, vol. 122(2), pages 317-347, October.
    16. LE GALLO, Julie, 2000. "Econométrie spatiale 2 -Hétérogénéité spatiale," LATEC - Document de travail - Economie (1991-2003) 2001-01, LATEC, Laboratoire d'Analyse et des Techniques EConomiques, CNRS UMR 5118, Université de Bourgogne.
    17. José Murteira & Esmeralda Ramalho & Joaquim Ramalho, 2013. "Heteroskedasticity testing through a comparison of Wald statistics," Portuguese Economic Journal, Springer;Instituto Superior de Economia e Gestao, vol. 12(2), pages 131-160, August.
    18. Kenneth W. Clements & H. Y. Izan & Yihui Lan, 2009. "A Stochastic Measure of International Competitiveness," International Review of Finance, International Review of Finance Ltd., vol. 9(1‐2), pages 51-81, March.
    19. P. Dorian Owen, 2017. "Evaluating Ingenious Instruments for Fundamental Determinants of Long-Run Economic Growth and Development," Econometrics, MDPI, vol. 5(3), pages 1-33, September.
    20. Ulrich Gunter & Irem Önder, 2018. "Determinants of Airbnb demand in Vienna and their implications for the traditional accommodation industry," Tourism Economics, , vol. 24(3), pages 270-293, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ifs:cemmap:25/18. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Emma Hyman (email available below). General contact details of provider: https://edirc.repec.org/data/cmifsuk.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.