(This abstract was borrowed from another version of this item.)"> (This abstract was borrowed from another version of this item.)">
Nothing Special   »   [go: up one dir, main page]

IDEAS home Printed from https://ideas.repec.org/p/img/wpaper/59.html
   My bibliography  Save this paper

The Material Basis of Modern Technologies. A Case Study on Rare Metals

Author

Listed:
  • George Yunxiong Li

    (London School of Economics and Political Science)

  • Andrea Ascani

    (Gran Sasso Science Institute, Italy)

  • Simona Iammarino

    (London School of Economics and Political Science, UK and Gran Sasso Science Institute, Italy)

Abstract
Scientific progress in many technologies exploits new materials. The unique properties of a wide range of Rare Metals (RMs) make them key inputs to achieve the functionality of emerging technologies. The speed of technological progress can therefore be influenced by the availability of necessary RM materials. This paper discusses these relations and provides a first exploratory empirical analysis of the link between critical raw materials and frontier technological innovation. By text mining 5,146,615 USPTO patents during the period 1976–2015, we explore the dependence of new inventions of 13 key RMs, finding that the latter play an increasingly important role as the material basis of modern technologies: in the four decades observed, more than 1/10 patents rely on at least one RM. This dependence increases significantly over time and is particularly high for emerging technologies such as semiconductors, nanotechnology, and green energy. Further, we adopt a panel of 5644 technology subgroup-RM pairs to explore the impact of variations in RM supply. The results show that, controlling for science & technology push and demand-pull factors, innovation in RM-based technologies is positively associated with its supply conditions, contributing to the understanding of the shifts of critical materials' use in frontier technologies.
(This abstract was borrowed from another version of this item.)

Suggested Citation

  • George Yunxiong Li & Andrea Ascani & Simona Iammarino, 2022. "The Material Basis of Modern Technologies. A Case Study on Rare Metals," Working Papers 59, Birkbeck Centre for Innovation Management Research, revised Feb 2022.
  • Handle: RePEc:img:wpaper:59
    as

    Download full text from publisher

    File URL: https://eprints.bbk.ac.uk/id/eprint/47608/1/47608.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Consoli, Davide & Marin, Giovanni & Marzucchi, Alberto & Vona, Francesco, 2016. "Do green jobs differ from non-green jobs in terms of skills and human capital?," Research Policy, Elsevier, vol. 45(5), pages 1046-1060.
    2. Davide Consoli & Fabrizio Fusillo & Gianluca Orsatti & Francesco Quatraro, 2021. "Skill endowment, routinisation and digital technologies: evidence from U.S. Metropolitan Areas," Industry and Innovation, Taylor & Francis Journals, vol. 28(8), pages 1017-1045, September.
    3. Daron Acemoglu & Philippe Aghion & Leonardo Bursztyn & David Hemous, 2012. "The Environment and Directed Technical Change," American Economic Review, American Economic Association, vol. 102(1), pages 131-166, February.
    4. Valero, Alicia & Valero, Antonio & Calvo, Guiomar & Ortego, Abel, 2018. "Material bottlenecks in the future development of green technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 93(C), pages 178-200.
    5. Sergio Petralia, 2020. "Mapping General Purpose Technologies with Patent Data," Papers in Evolutionary Economic Geography (PEEG) 2027, Utrecht University, Department of Human Geography and Spatial Planning, Group Economic Geography, revised Jul 2020.
    6. Moss, R.L. & Tzimas, E. & Kara, H. & Willis, P. & Kooroshy, J., 2013. "The potential risks from metals bottlenecks to the deployment of Strategic Energy Technologies," Energy Policy, Elsevier, vol. 55(C), pages 556-564.
    7. Bronwyn H. Hall & Adam Jaffe & Manuel Trajtenberg, 2005. "Market Value and Patent Citations," RAND Journal of Economics, The RAND Corporation, vol. 36(1), pages 16-38, Spring.
    8. Volker Zepf & Benjamin Achzet & Armin Reller, 2015. "Strategic Resources for Emerging Technologies," Natural Resource Management and Policy, in: Susanne Hartard & Wolfgang Liebert (ed.), Competition and Conflicts on Resource Use, edition 127, chapter 0, pages 259-272, Springer.
    9. Mancheri, Nabeel A., 2015. "World trade in rare earths, Chinese export restrictions, and implications," Resources Policy, Elsevier, vol. 46(P2), pages 262-271.
    10. Philippe Aghion & Antoine Dechezleprêtre & David Hémous & Ralf Martin & John Van Reenen, 2016. "Carbon Taxes, Path Dependency, and Directed Technical Change: Evidence from the Auto Industry," Journal of Political Economy, University of Chicago Press, vol. 124(1), pages 1-51.
    11. Nick Johnstone & Ivan Haščič & David Popp, 2010. "Renewable Energy Policies and Technological Innovation: Evidence Based on Patent Counts," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 45(1), pages 133-155, January.
    12. repec:fth:harver:1473 is not listed on IDEAS
    13. Edward Barbier, 1999. "Endogenous Growth and Natural Resource Scarcity," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 14(1), pages 51-74, July.
    14. Rosenberg, Nathan, 1973. "Innovative Responses to Materials Shortages," American Economic Review, American Economic Association, vol. 63(2), pages 111-118, May.
    15. Campbell, Gary A., 1985. "The role of co-products in stabilizing the metal mining industry," Resources Policy, Elsevier, vol. 11(4), pages 267-274, December.
    16. Nicolas Berman & Mathieu Couttenier & Dominic Rohner & Mathias Thoenig, 2017. "This Mine Is Mine! How Minerals Fuel Conflicts in Africa," American Economic Review, American Economic Association, vol. 107(6), pages 1564-1610, June.
    17. Hannes Hofmann & Martin C. Schleper & Constantin Blome, 2018. "Conflict Minerals and Supply Chain Due Diligence: An Exploratory Study of Multi-tier Supply Chains," Journal of Business Ethics, Springer, vol. 147(1), pages 115-141, January.
    18. Castellacci, Fulvio & Natera, Jose Miguel, 2013. "The dynamics of national innovation systems: A panel cointegration analysis of the coevolution between innovative capability and absorptive capacity," Research Policy, Elsevier, vol. 42(3), pages 579-594.
    19. Popp, David C., 2001. "The effect of new technology on energy consumption," Resource and Energy Economics, Elsevier, vol. 23(3), pages 215-239, July.
    20. Giada Di Stefano & Alfonso Gambardella & Gianmario Verona, 2012. "Technology Push and Demand Pull Perspectives in Innovation Studies: Current Findings and Future Research Directions," Post-Print hal-00696607, HAL.
    21. Dosi, Giovanni & Nelson, Richard R., 2010. "Technical Change and Industrial Dynamics as Evolutionary Processes," Handbook of the Economics of Innovation, in: Bronwyn H. Hall & Nathan Rosenberg (ed.), Handbook of the Economics of Innovation, edition 1, volume 1, chapter 0, pages 51-127, Elsevier.
    22. Lorena M. D'Agostino & Keld Laursen & Grazia D. Santangelo, 2013. "The impact of R&D offshoring on the home knowledge production of OECD investing regions," Journal of Economic Geography, Oxford University Press, vol. 13(1), pages 145-175, January.
    23. Christian Groth & Poul Schou, 2002. "Can non-renewable resources alleviate the knife-edge character of endogenous growth?," Oxford Economic Papers, Oxford University Press, vol. 54(3), pages 386-411, July.
    24. Daron Acemoglu, 2002. "Directed Technical Change," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 69(4), pages 781-809.
    25. Giuliani, Elisa, 2018. "Regulating global capitalism amid rampant corporate wrongdoing—Reply to “Three frames for innovation policy”," Research Policy, Elsevier, vol. 47(9), pages 1577-1582.
    26. Diemer, Andreas & Iammarino, Simona & Perkins, Richard & Gros, Axel, 2021. "Technology, resources and geography in a paradigm shift: the case of Critical & Conflict Materials in ICTs," LSE Research Online Documents on Economics 111894, London School of Economics and Political Science, LSE Library.
    27. Dosi, Giovanni, 1993. "Technological paradigms and technological trajectories : A suggested interpretation of the determinants and directions of technical change," Research Policy, Elsevier, vol. 22(2), pages 102-103, April.
    28. Smulders, J.A., 2005. "Endogenous technological change, natural resources and growth," Other publications TiSEM d6e27500-7604-420f-9961-4, Tilburg University, School of Economics and Management.
    29. Castellacci, Fulvio & Archibugi, Daniele, 2008. "The technology clubs: The distribution of knowledge across nations," Research Policy, Elsevier, vol. 37(10), pages 1659-1673, December.
    30. Böhringer, Christoph & Cuntz, Alexander & Harhoff, Dietmar & Asane-Otoo, Emmanuel, 2017. "The impact of the German feed-in tariff scheme on innovation: Evidence based on patent filings in renewable energy technologies," Energy Economics, Elsevier, vol. 67(C), pages 545-553.
    31. Dietmar Harhoff & Francis Narin & F. M. Scherer & Katrin Vopel, 1999. "Citation Frequency And The Value Of Patented Inventions," The Review of Economics and Statistics, MIT Press, vol. 81(3), pages 511-515, August.
    32. Joseph Stiglitz, 1974. "Growth with Exhaustible Natural Resources: Efficient and Optimal Growth Paths," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 41(5), pages 123-137.
    33. Elshkaki, Ayman & Shen, Lei, 2019. "Energy-material nexus: The impacts of national and international energy scenarios on critical metals use in China up to 2050 and their global implications," Energy, Elsevier, vol. 180(C), pages 903-917.
    34. Chakraborty, Pavel & Chatterjee, Chirantan, 2017. "Does environmental regulation indirectly induce upstream innovation? New evidence from India," Research Policy, Elsevier, vol. 46(5), pages 939-955.
    35. Grupp, Hariolf, 1996. "Spillover Effects and the Science Base of Innovations Reconsidered: An Empirical Approach," Journal of Evolutionary Economics, Springer, vol. 6(2), pages 175-197, May.
    36. Pierre-Alexandre Balland & Ron Boschma & Joan Crespo & David L. Rigby, 2019. "Smart specialization policy in the European Union: relatedness, knowledge complexity and regional diversification," Regional Studies, Taylor & Francis Journals, vol. 53(9), pages 1252-1268, September.
    37. Harhoff, Dietmar & Gambardella, Alfonso & Verspagen, Bart, 2008. "The Value of European Patents," CEPR Discussion Papers 6848, C.E.P.R. Discussion Papers.
    38. Frenzel, Max & Mikolajczak, Claire & Reuter, Markus A. & Gutzmer, Jens, 2017. "Quantifying the relative availability of high-tech by-product metals – The cases of gallium, germanium and indium," Resources Policy, Elsevier, vol. 52(C), pages 327-335.
    39. Richard G. Newell & Adam B. Jaffe & Robert N. Stavins, 1999. "The Induced Innovation Hypothesis and Energy-Saving Technological Change," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 114(3), pages 941-975.
    40. Bretschger, Lucas, 2005. "Economics of technological change and the natural environment: How effective are innovations as a remedy for resource scarcity?," Ecological Economics, Elsevier, vol. 54(2-3), pages 148-163, August.
    41. Kyunam Kim & Eunnyeong Heo & Yeonbae Kim, 2017. "Dynamic Policy Impacts on a Technological-Change System of Renewable Energy: An Empirical Analysis," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 66(2), pages 205-236, February.
    42. Petra Moser & Tom Nicholas, 2004. "Was Electricity a General Purpose Technology? Evidence from Historical Patent Citations," American Economic Review, American Economic Association, vol. 94(2), pages 388-394, May.
    43. Robert M. Solow, 1974. "The Economics of Resources or the Resources of Economics," Palgrave Macmillan Books, in: Chennat Gopalakrishnan (ed.), Classic Papers in Natural Resource Economics, chapter 12, pages 257-276, Palgrave Macmillan.
    44. Kim, Juhan & Lee, Jungbae & Kim, BumChoong & Kim, Jinsoo, 2019. "Raw material criticality assessment with weighted indicators: An application of fuzzy analytic hierarchy process," Resources Policy, Elsevier, vol. 60(C), pages 225-233.
    45. Mowery, David & Rosenberg, Nathan, 1993. "The influence of market demand upon innovation: A critical review of some recent empirical studies," Research Policy, Elsevier, vol. 22(2), pages 107-108, April.
    46. Sprecher, Benjamin & Reemeyer, Laurie & Alonso, Elisa & Kuipers, Koen & Graedel, Thomas E., 2017. "How “black swan” disruptions impact minor metals," Resources Policy, Elsevier, vol. 54(C), pages 88-96.
    47. Zvi Griliches, 1998. "Patent Statistics as Economic Indicators: A Survey," NBER Chapters, in: R&D and Productivity: The Econometric Evidence, pages 287-343, National Bureau of Economic Research, Inc.
    48. Romer, Paul M, 1990. "Endogenous Technological Change," Journal of Political Economy, University of Chicago Press, vol. 98(5), pages 71-102, October.
    49. Diemel, J.A. & Cuvelier, J., 2015. "Explaining the uneven distribution of conflict-mineral policy implementation in the Democratic Republic of the Congo: The role of the Katanga policy network (2009–2011)," Resources Policy, Elsevier, vol. 46(P2), pages 151-160.
    50. E. M. Harper & Goksin Kavlak & Lara Burmeister & Matthew J. Eckelman & Serkan Erbis & Vicente Sebastian Espinoza & Philip Nuss & T. E. Graedel, 2015. "Criticality of the Geological Zinc, Tin, and Lead Family," Journal of Industrial Ecology, Yale University, vol. 19(4), pages 628-644, August.
    51. Gary A. Campbell, 2020. "The cobalt market revisited," Mineral Economics, Springer;Raw Materials Group (RMG);Luleå University of Technology, vol. 33(1), pages 21-28, July.
    52. Di Stefano, Giada & Gambardella, Alfonso & Verona, Gianmario, 2012. "Technology push and demand pull perspectives in innovation studies: Current findings and future research directions," Research Policy, Elsevier, vol. 41(8), pages 1283-1295.
    53. Petralia, Sergio, 2020. "Mapping general purpose technologies with patent data," Research Policy, Elsevier, vol. 49(7).
    54. Radetzki, Marian & Eggert, Roderick G. & Lagos, Gustavo & Lima, Marcos & Tilton, John E., 2008. "The boom in mineral markets: How long might it last?," Resources Policy, Elsevier, vol. 33(3), pages 125-128, September.
    55. Olmstead, Alan L & Rhode, Paul, 1993. "Induced Innovation in American Agriculture: A Reconsideration," Journal of Political Economy, University of Chicago Press, vol. 101(1), pages 100-118, February.
    56. Grandell, Leena & Lehtilä, Antti & Kivinen, Mari & Koljonen, Tiina & Kihlman, Susanna & Lauri, Laura S., 2016. "Role of critical metals in the future markets of clean energy technologies," Renewable Energy, Elsevier, vol. 95(C), pages 53-62.
    57. Kawagoe, Toshihiko & Otsuka, Keijiro & Hayami, Yujiro, 1986. "Induced Bias of Technical Change in Agriculture: The United States and Japan, 1880-1980," Journal of Political Economy, University of Chicago Press, vol. 94(3), pages 523-544, June.
    58. David Popp & Ted Juhl & Daniel K.N. Johnson, 2003. "Time in Purgatory: Determinants of the Grant Lag for U.S. Patent Applications," NBER Working Papers 9518, National Bureau of Economic Research, Inc.
    59. Giovanni Dosi, 2000. "Sources, Procedures, and Microeconomic Effects of Innovation," Chapters, in: Innovation, Organization and Economic Dynamics, chapter 2, pages 63-114, Edward Elgar Publishing.
    60. Hayes, Sarah M. & McCullough, Erin A., 2018. "Critical minerals: A review of elemental trends in comprehensive criticality studies," Resources Policy, Elsevier, vol. 59(C), pages 192-199.
    61. Lee Fleming & Olav Sorenson, 2004. "Science as a map in technological search," Strategic Management Journal, Wiley Blackwell, vol. 25(8‐9), pages 909-928, August.
    62. Zhu, Zhiyun & Dong, Zhiliang & Zhang, Yanxing & Suo, Guibin & Liu, Sen, 2020. "Strategic mineral resource competition: Strategies of the dominator and nondominator," Resources Policy, Elsevier, vol. 69(C).
    63. David Popp, 2002. "Induced Innovation and Energy Prices," American Economic Review, American Economic Association, vol. 92(1), pages 160-180, March.
    64. Partha Dasgupta & Geoffrey Heal, 1974. "The Optimal Depletion of Exhaustible Resources," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 41(5), pages 3-28.
    65. J. J. Winnink & Robert J. W. Tijssen, 2015. "Early stage identification of breakthroughs at the interface of science and technology: lessons drawn from a landmark publication," Scientometrics, Springer;Akadémiai Kiadó, vol. 102(1), pages 113-134, January.
    66. Lindman, Åsa & Söderholm, Patrik, 2016. "Wind energy and green economy in Europe: Measuring policy-induced innovation using patent data," Applied Energy, Elsevier, vol. 179(C), pages 1351-1359.
    67. Lucas Bretschger, 1999. "Growth Theory and Sustainable Development," Books, Edward Elgar Publishing, number 1817.
    68. Nicola Dalla Via & Paolo Perego, 2018. "Determinants of Conflict Minerals Disclosure Under the Dodd–Frank Act," Business Strategy and the Environment, Wiley Blackwell, vol. 27(6), pages 773-788, September.
    69. Schmookler, Jacob, 1962. "Economic Sources of Inventive Activity," The Journal of Economic History, Cambridge University Press, vol. 22(1), pages 1-20, March.
    70. Hayami, Yujiro & Ruttan, V W, 1970. "Factor Prices and Technical Change in Agricultural Development: The United States and Japan, 1880-1960," Journal of Political Economy, University of Chicago Press, vol. 78(5), pages 1115-1141, Sept.-Oct.
    71. Diemer, Andreas & Iammarino, Simona & Perkins, Richard & Gros, Axel, 2022. "Technology, resources and geography in a paradigm shift: the case of critical and conflict materials in ICTs," LSE Research Online Documents on Economics 115103, London School of Economics and Political Science, LSE Library.
    72. Rosenberg, Nathan, 1969. "The Direction of Technological Change: Inducement Mechanisms and Focusing Devices," Economic Development and Cultural Change, University of Chicago Press, vol. 18(1), pages 1-24, Part I Oc.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ron Boschma & Rune Fitjar & Elisa Giuliani & Simona Iammarino, 2024. "Unseen costs: the inequities of the geography of innovation," Papers in Evolutionary Economic Geography (PEEG) 2428, Utrecht University, Department of Human Geography and Spatial Planning, Group Economic Geography, revised Sep 2024.
    2. George Yunxiong Li & Simona Iammarino, 2024. "Critical Raw Materials and Renewable Energy Transition: The Role of Domestic Supply," Discussion Paper series in Regional Science & Economic Geography 2024-04, Gran Sasso Science Institute, Social Sciences, revised Oct 2024.
    3. Gong, Huiwen & Andersen, Allan Dahl, 2024. "The role of material resources for rapid technology diffusion in net-zero transitions: Insights from EV lithium-ion battery Technological Innovation System in China," Technological Forecasting and Social Change, Elsevier, vol. 200(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Carraro, Carlo & De Cian, Enrica & Nicita, Lea & Massetti, Emanuele & Verdolini, Elena, 2010. "Environmental Policy and Technical Change: A Survey," International Review of Environmental and Resource Economics, now publishers, vol. 4(2), pages 163-219, October.
    2. Naqvi, Asjad & Stockhammer, Engelbert, 2018. "Directed Technological Change in a Post-Keynesian Ecological Macromodel," Ecological Economics, Elsevier, vol. 154(C), pages 168-188.
    3. Herman, Kyle S. & Xiang, Jun, 2019. "Induced innovation in clean energy technologies from foreign environmental policy stringency?," Technological Forecasting and Social Change, Elsevier, vol. 147(C), pages 198-207.
    4. Kalcheva, Ivalina & McLemore, Ping & Pant, Shagun, 2018. "Innovation: The interplay between demand-side shock and supply-side environment," Research Policy, Elsevier, vol. 47(2), pages 440-461.
    5. Hötte, Kerstin, 2023. "Demand-pull, technology-push, and the direction of technological change," Research Policy, Elsevier, vol. 52(5).
    6. Nelson, Kelly P. & Parton, Lee C. & Brown, Zachary S., 2022. "Biofuels policy and innovation impacts: Evidence from biofuels and agricultural patent indicators," Energy Policy, Elsevier, vol. 162(C).
    7. Antony, Jürgen & Klarl, Torben, 2022. "Poverty and sustainable development around the world during transition periods," Energy Economics, Elsevier, vol. 110(C).
    8. Di Maria, Corrado & Valente, Simone, 2006. "The Direction of Technical Change in Capital-Resource Economies," MPRA Paper 1040, University Library of Munich, Germany.
    9. Bretschger, Lucas, 2005. "Economics of technological change and the natural environment: How effective are innovations as a remedy for resource scarcity?," Ecological Economics, Elsevier, vol. 54(2-3), pages 148-163, August.
    10. Jin, Wei & Zhang, ZhongXiang, 2014. "Explaining the Slow Pace of Energy Technological Innovation Why Market Conditions Matter?," Energy: Resources and Markets 165758, Fondazione Eni Enrico Mattei (FEEM).
    11. Smulders, J.A., 2005. "Endogenous technological change, natural resources and growth," Other publications TiSEM d6e27500-7604-420f-9961-4, Tilburg University, School of Economics and Management.
    12. Bretschger, Lucas & Smulders, Sjak, 2012. "Sustainability and substitution of exhaustible natural resources," Journal of Economic Dynamics and Control, Elsevier, vol. 36(4), pages 536-549.
    13. Nemet, Gregory F., 2009. "Demand-pull, technology-push, and government-led incentives for non-incremental technical change," Research Policy, Elsevier, vol. 38(5), pages 700-709, June.
    14. Zhangsheng Liu & Liuqingqing Yang & Liqin Fan, 2021. "Induced Effect of Environmental Regulation on Green Innovation: Evidence from the Increasing-Block Pricing Scheme," IJERPH, MDPI, vol. 18(5), pages 1-15, March.
    15. Grafström, Jonas & Poudineh, Rahmat, 2023. "No evidence of counteracting policy effects on European solar power invention and diffusion," Energy Policy, Elsevier, vol. 172(C).
    16. Raphael Calel & Antoine Dechezleprêtre, 2016. "Environmental Policy and Directed Technological Change: Evidence from the European Carbon Market," The Review of Economics and Statistics, MIT Press, vol. 98(1), pages 173-191, March.
    17. Nesta, Lionel & Vona, Francesco & Nicolli, Francesco, 2014. "Environmental policies, competition and innovation in renewable energy," Journal of Environmental Economics and Management, Elsevier, vol. 67(3), pages 396-411.
    18. Martin Kalthaus, 2020. "Knowledge recombination along the technology life cycle," Journal of Evolutionary Economics, Springer, vol. 30(3), pages 643-704, July.
    19. Grazia Cecere & Sascha Rexhäuser & Patrick Schulte, 2019. "From less promising to green? Technological opportunities and their role in (green) ICT innovation," Economics of Innovation and New Technology, Taylor & Francis Journals, vol. 28(1), pages 45-63, January.
    20. Yoruk, Esin & Radosevic, Slavo & Fischer, Bruno, 2023. "Technological profiles, upgrading and the dynamics of growth: Country-level patterns and trajectories across distinct stages of development," Research Policy, Elsevier, vol. 52(8).

    More about this item

    JEL classification:

    • O30 - Economic Development, Innovation, Technological Change, and Growth - - Innovation; Research and Development; Technological Change; Intellectual Property Rights - - - General
    • O31 - Economic Development, Innovation, Technological Change, and Growth - - Innovation; Research and Development; Technological Change; Intellectual Property Rights - - - Innovation and Invention: Processes and Incentives
    • O33 - Economic Development, Innovation, Technological Change, and Growth - - Innovation; Research and Development; Technological Change; Intellectual Property Rights - - - Technological Change: Choices and Consequences; Diffusion Processes
    • Q31 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Nonrenewable Resources and Conservation - - - Demand and Supply; Prices

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:img:wpaper:59. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Helen Lawton Smith (email available below). General contact details of provider: https://edirc.repec.org/data/dmbbkuk.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.