Nothing Special   »   [go: up one dir, main page]

IDEAS home Printed from https://ideas.repec.org/p/foi/wpaper/2020_06.html
   My bibliography  Save this paper

Implementation of Optimal Connection Networks

Author

Listed:
  • Jens Leth Hougaard

    (NYU-Shanghai, China
    Department of Food and Resource Economics, University of Copenhagen)

  • Mich Tvede

    (University of East Anglia)

Abstract
We consider a connection networks model. Every agent has a demand in the form of pairs of locations she wants connected, and a willingness to pay for connectivity. A planner aims at implementing a welfare maximizing network and allocating the resulting cost, but information is asymmetric: agents are fully informed, the planner is ignorant. The options for full implementation in Nash and strong Nash equilibria are studied. We simplify strategy sets without changing the set of Nash implementable correspondences. We show the correspondence of consisting of welfare maximizing networks and individually rational cost allocations is implementable. We construct a minimal Nash implementable desirable solution in the set of upper hemi-continuous and Nash implementable solutions. It is not possible to implement solutions such a the Shapley value unless we settle for partial implementation.

Suggested Citation

  • Jens Leth Hougaard & Mich Tvede, 2020. "Implementation of Optimal Connection Networks," IFRO Working Paper 2020/06, University of Copenhagen, Department of Food and Resource Economics.
  • Handle: RePEc:foi:wpaper:2020_06
    as

    Download full text from publisher

    File URL: http://okonomi.foi.dk/workingpapers/WPpdf/WP2020/IFRO_WP_2020_06.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Hervé Moulin & Scott Shenker, 2001. "Strategyproof sharing of submodular costs:budget balance versus efficiency," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 18(3), pages 511-533.
    2. Gustavo Bergantiños & Leticia Lorenzo, 2004. "A non-cooperative approach to the cost spanning tree problem," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 59(3), pages 393-403, July.
    3. Jackson, Matthew O. & Wolinsky, Asher, 1996. "A Strategic Model of Social and Economic Networks," Journal of Economic Theory, Elsevier, vol. 71(1), pages 44-74, October.
    4. Christian Trudeau, 2013. "Characterizations Of The Kar And Folk Solutions For Minimum Cost Spanning Tree Problems," International Game Theory Review (IGTR), World Scientific Publishing Co. Pte. Ltd., vol. 15(02), pages 1-16.
    5. Gul, Faruk, 1989. "Bargaining Foundations of Shapley Value," Econometrica, Econometric Society, vol. 57(1), pages 81-95, January.
    6. Perez-Castrillo, David & Wettstein, David, 2001. "Bidding for the Surplus : A Non-cooperative Approach to the Shapley Value," Journal of Economic Theory, Elsevier, vol. 100(2), pages 274-294, October.
    7. Michele Lombardi & Naoki Yoshihara, 2013. "A full characterization of nash implementation with strategy space reduction," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 54(1), pages 131-151, September.
    8. Hougaard, Jens Leth & Moulin, Hervé, 2014. "Sharing the cost of redundant items," Games and Economic Behavior, Elsevier, vol. 87(C), pages 339-352.
    9. Bergantinos, Gustavo & Vidal-Puga, Juan J., 2007. "A fair rule in minimum cost spanning tree problems," Journal of Economic Theory, Elsevier, vol. 137(1), pages 326-352, November.
    10. Ruben Juarez & Rajnish Kumar, 2013. "Implementing efficient graphs in connection networks," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 54(2), pages 359-403, October.
    11. E. Maskin, 1978. "Implementation and Strong Nash Equilibrium," Working papers 216, Massachusetts Institute of Technology (MIT), Department of Economics.
    12. Peyton Young, H., 1998. "Cost allocation, demand revelation, and core implementation," Mathematical Social Sciences, Elsevier, vol. 36(3), pages 213-228, December.
    13. Anna Bogomolnaia & Ron Holzman & Hervé Moulin, 2010. "Sharing the Cost of a Capacity Network," Mathematics of Operations Research, INFORMS, vol. 35(1), pages 173-192, February.
    14. Mutuswami, Suresh & Winter, Eyal, 2002. "Subscription Mechanisms for Network Formation," Journal of Economic Theory, Elsevier, vol. 106(2), pages 242-264, October.
    15. Gustavo Bergantiños & Leticia Lorenzo, 2005. "Optimal Equilibria in the Non-Cooperative Game Associated with Cost Spanning Tree Problems," Annals of Operations Research, Springer, vol. 137(1), pages 101-115, July.
    16. Mutuswami, Suresh & Winter, Eyal, 2004. "Efficient mechanisms for multiple public goods," Journal of Public Economics, Elsevier, vol. 88(3-4), pages 629-644, March.
    17. Hougaard, Jens Leth & Tvede, Mich, 2015. "Minimum cost connection networks: Truth-telling and implementation," Journal of Economic Theory, Elsevier, vol. 157(C), pages 76-99.
    18. Hougaard, Jens Leth & Tvede, Mich, 2012. "Truth-telling and Nash equilibria in minimum cost spanning tree models," European Journal of Operational Research, Elsevier, vol. 222(3), pages 566-570.
    19. Bergantiños, Gustavo & Vidal-Puga, Juan, 2010. "Realizing fair outcomes in minimum cost spanning tree problems through non-cooperative mechanisms," European Journal of Operational Research, Elsevier, vol. 201(3), pages 811-820, March.
    20. Moulin, Hervé, 2014. "Pricing traffic in a spanning network," Games and Economic Behavior, Elsevier, vol. 86(C), pages 475-490.
    21. Trudeau, Christian, 2012. "A new stable and more responsive cost sharing solution for minimum cost spanning tree problems," Games and Economic Behavior, Elsevier, vol. 75(1), pages 402-412.
    22. Saijo, Tatsuyoshi, 1988. "Strategy Space Reduction in Maskin's Theorem: Sufficient Conditions for Nash Implementation," Econometrica, Econometric Society, vol. 56(3), pages 693-700, May.
    23. Jens Leth Hougaard & Mich Tvede, 2020. "Trouble Comes in Threes: Core stability in Minimum Cost Connection Networks," IFRO Working Paper 2020/07, University of Copenhagen, Department of Food and Resource Economics.
    24. HervÊ Moulin, 1999. "Incremental cost sharing: Characterization by coalition strategy-proofness," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 16(2), pages 279-320.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Panova, Elena, 2023. "Sharing cost of network among users with differentiated willingness to pay," Games and Economic Behavior, Elsevier, vol. 142(C), pages 666-689.
    2. Juarez, Ruben & Nitta, Kohei & Vargas, Miguel, 2021. "Coalitional efficient profit-sharing," Economics Letters, Elsevier, vol. 204(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jens Leth Hougaard & Mich Tvede, 2020. "Trouble Comes in Threes: Core stability in Minimum Cost Connection Networks," IFRO Working Paper 2020/07, University of Copenhagen, Department of Food and Resource Economics.
    2. Hougaard, Jens Leth & Tvede, Mich, 2022. "Trouble comes in threes: Core stability in minimum cost connection networks," European Journal of Operational Research, Elsevier, vol. 297(1), pages 319-324.
    3. Hernández, Penélope & Peris, Josep E. & Silva-Reus, José A., 2016. "Strategic sharing of a costly network," Journal of Mathematical Economics, Elsevier, vol. 66(C), pages 72-82.
    4. Hougaard, Jens Leth & Tvede, Mich, 2015. "Minimum cost connection networks: Truth-telling and implementation," Journal of Economic Theory, Elsevier, vol. 157(C), pages 76-99.
    5. Gustavo Bergantiños & Juan Vidal-Puga, 2021. "A review of cooperative rules and their associated algorithms for minimum-cost spanning tree problems," SERIEs: Journal of the Spanish Economic Association, Springer;Spanish Economic Association, vol. 12(1), pages 73-100, March.
    6. Hougaard, Jens Leth & Tvede, Mich, 2012. "Truth-telling and Nash equilibria in minimum cost spanning tree models," European Journal of Operational Research, Elsevier, vol. 222(3), pages 566-570.
    7. Bergantiños, Gustavo & Vidal-Puga, Juan, 2020. "Cooperative games for minimum cost spanning tree problems," MPRA Paper 104911, University Library of Munich, Germany.
    8. Bergantiños, Gustavo & Vidal-Puga, Juan, 2010. "Realizing fair outcomes in minimum cost spanning tree problems through non-cooperative mechanisms," European Journal of Operational Research, Elsevier, vol. 201(3), pages 811-820, March.
    9. Jens Leth Hougaard & Mich Tvede, 2010. "Strategyproof Nash Equilibria in Minimum Cost Spanning Tree Models," MSAP Working Paper Series 01_2010, University of Copenhagen, Department of Food and Resource Economics.
    10. Gustavo Bergantiños & Juan Vidal-Puga, 2015. "Characterization of monotonic rules in minimum cost spanning tree problems," International Journal of Game Theory, Springer;Game Theory Society, vol. 44(4), pages 835-868, November.
    11. Bergantiños, Gustavo & Martínez, Ricardo, 2014. "Cost allocation in asymmetric trees," European Journal of Operational Research, Elsevier, vol. 237(3), pages 975-987.
    12. Hernández, Penélope & Peris, Josep E. & Vidal-Puga, Juan, 2023. "A non-cooperative approach to the folk rule in minimum cost spanning tree problems," European Journal of Operational Research, Elsevier, vol. 307(2), pages 922-928.
    13. Han, Lining & Juarez, Ruben, 2018. "Free intermediation in resource transmission," Games and Economic Behavior, Elsevier, vol. 111(C), pages 75-84.
    14. Norde, Henk, 2019. "The degree and cost adjusted folk solution for minimum cost spanning tree games," Games and Economic Behavior, Elsevier, vol. 113(C), pages 734-742.
    15. Ruben Juarez & Michael Wu, 2019. "Routing-Proofness in Congestion-Prone Networks," Games, MDPI, vol. 10(2), pages 1-18, April.
    16. Juarez, Ruben & Ko, Chiu Yu & Xue, Jingyi, 2018. "Sharing sequential values in a network," Journal of Economic Theory, Elsevier, vol. 177(C), pages 734-779.
    17. María Gómez-Rúa & Juan Vidal-Puga, 2017. "A monotonic and merge-proof rule in minimum cost spanning tree situations," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 63(3), pages 813-826, March.
    18. Chessa, Michela & Hanaki, Nobuyuki & Lardon, Aymeric & Yamada, Takashi, 2023. "An experiment on the Nash program: A comparison of two strategic mechanisms implementing the Shapley value," Games and Economic Behavior, Elsevier, vol. 141(C), pages 88-104.
    19. Gustavo Bergantiños & María Gómez-Rúa, 2015. "An axiomatic approach in minimum cost spanning tree problems with groups," Annals of Operations Research, Springer, vol. 225(1), pages 45-63, February.
    20. Christian Trudeau, 2014. "Linking the Kar and folk solutions through a problem separation property," International Journal of Game Theory, Springer;Game Theory Society, vol. 43(4), pages 845-870, November.

    More about this item

    Keywords

    Connection networks; Welfare maximization; Nash Implementation; Strong Nash Implementation;
    All these keywords.

    JEL classification:

    • C70 - Mathematical and Quantitative Methods - - Game Theory and Bargaining Theory - - - General
    • C72 - Mathematical and Quantitative Methods - - Game Theory and Bargaining Theory - - - Noncooperative Games
    • D71 - Microeconomics - - Analysis of Collective Decision-Making - - - Social Choice; Clubs; Committees; Associations
    • D85 - Microeconomics - - Information, Knowledge, and Uncertainty - - - Network Formation

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:foi:wpaper:2020_06. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Geir Tveit (email available below). General contact details of provider: https://edirc.repec.org/data/foikudk.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.