Nothing Special   »   [go: up one dir, main page]

IDEAS home Printed from https://ideas.repec.org/p/ehl/lserod/112775.html
   My bibliography  Save this paper

Global trends in the invention and diffusion of climate change mitigation technologies

Author

Listed:
  • Probst, Benedict
  • Touboul, Simon
  • Glachant, Matthieu
  • Dechezleprêtre, Antoine
Abstract
Increasing the development and diffusion of climate change mitigation technologies on a global scale is critical to reaching net-zero emissions. We have analysed over a quarter of a million high-value inventions in all major climate change mitigation technologies patented from 1995 to 2017 by inventors located in 170 countries. Our analysis shows an annual growth rate of 10% from 1995 to 2012 in these high-value inventions. Yet, from 2013 to 2017, the growth rate of these inventions fell by around 6% annually, likely driven by declining fossil fuel prices, low carbon prices and increasing technological maturity for some technologies, such as solar photovoltaics. Invention has remained highly concentrated geographically over the past decade, with inventors in Germany, Japan and the United States accounting for more than half of global inventions, and the top ten countries for almost 90%. Except for inventors in China, most middle-income economies have not caught up and remain less specialized in low-carbon technologies than high-income economies.

Suggested Citation

  • Probst, Benedict & Touboul, Simon & Glachant, Matthieu & Dechezleprêtre, Antoine, 2021. "Global trends in the invention and diffusion of climate change mitigation technologies," LSE Research Online Documents on Economics 112775, London School of Economics and Political Science, LSE Library.
  • Handle: RePEc:ehl:lserod:112775
    as

    Download full text from publisher

    File URL: http://eprints.lse.ac.uk/112775/
    File Function: Open access version.
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. David M. Reiner, 2016. "Learning through a portfolio of carbon capture and storage demonstration projects," Nature Energy, Nature, vol. 1(1), pages 1-7, January.
    2. repec:fth:harver:1473 is not listed on IDEAS
    3. de Rassenfosse, Gaétan & Dernis, Hélène & Guellec, Dominique & Picci, Lucio & van Pottelsberghe de la Potterie, Bruno, 2013. "The worldwide count of priority patents: A new indicator of inventive activity," Research Policy, Elsevier, vol. 42(3), pages 720-737.
    4. Margolis, Robert M. & Kammen, Daniel M., 1999. "Evidence of under-investment in energy R&D in the United States and the impact of Federal policy," Energy Policy, Elsevier, vol. 27(10), pages 575-584, October.
    5. Wolfgang Keller, 2004. "International Technology Diffusion," Journal of Economic Literature, American Economic Association, vol. 42(3), pages 752-782, September.
    6. Antoine Dechezleprêtre & Yann Ménière & Myra Mohnen, 2017. "International patent families: from application strategies to statistical indicators," Scientometrics, Springer;Akadémiai Kiadó, vol. 111(2), pages 793-828, May.
    7. David Popp, 2016. "Economic analysis of scientific publications and implications for energy research and development," Nature Energy, Nature, vol. 1(4), pages 1-8, April.
    8. Matthieu Glachant & Antoine Dechezleprêtre, 2017. "What role for climate negotiations on technology transfer?," Climate Policy, Taylor & Francis Journals, vol. 17(8), pages 962-981, November.
    9. Lanjouw, Jean Olson & Mody, Ashoka, 1996. "Innovation and the international diffusion of environmentally responsive technology," Research Policy, Elsevier, vol. 25(4), pages 549-571, June.
    10. Sinke, Wim C., 2019. "Development of photovoltaic technologies for global impact," Renewable Energy, Elsevier, vol. 138(C), pages 911-914.
    11. Antoine Dechezleprêtre & Matthieu Glachant & Ivan Haščič & Nick Johnstone & Yann Ménière, 2011. "Invention and Transfer of Climate Change--Mitigation Technologies: A Global Analysis," Review of Environmental Economics and Policy, Association of Environmental and Resource Economists, vol. 5(1), pages 109-130, Winter.
    12. Daron Acemoglu & David Hemous & Lint Barrage & Philippe Aghion, 2019. "Climate Change, Directed Innovation, and Energy Transition: The Long-run Consequences of the Shale Gas Revolution," 2019 Meeting Papers 1302, Society for Economic Dynamics.
    13. David Popp & Jacquelyn Pless & Ivan Haščič & Nick Johnstone, 2020. "Innovation and Entrepreneurship in the Energy Sector," NBER Chapters, in: The Role of Innovation and Entrepreneurship in Economic Growth, pages 175-248, National Bureau of Economic Research, Inc.
    14. Dietmar Harhoff & Francis Narin & F. M. Scherer & Katrin Vopel, 1999. "Citation Frequency And The Value Of Patented Inventions," The Review of Economics and Statistics, MIT Press, vol. 81(3), pages 511-515, August.
    15. Raphael Calel & Antoine Dechezleprêtre, 2016. "Environmental Policy and Directed Technological Change: Evidence from the European Carbon Market," The Review of Economics and Statistics, MIT Press, vol. 98(1), pages 173-191, March.
    16. Maria Carvalho & Antoine Dechezlepretre & Matthieu Glachant, 2017. "Understanding the dynamics of global value chains for solar photovoltaic technologies," WIPO Economic Research Working Papers 40, World Intellectual Property Organization - Economics and Statistics Division.
    17. Benedict Probst & Vasilios Anatolitis & Andreas Kontoleon & Laura Díaz Anadón, 2020. "The short-term costs of local content requirements in the Indian solar auctions," Nature Energy, Nature, vol. 5(11), pages 842-850, November.
    18. Huenteler, Joern, 2014. "International support for feed-in tariffs in developing countries—A review and analysis of proposed mechanisms," Renewable and Sustainable Energy Reviews, Elsevier, vol. 39(C), pages 857-873.
    19. Gunnar Luderer & Valentina Bosetti & Michael Jakob & Marian Leimbach & Jan Steckel & Henri Waisman & Ottmar Edenhofer, 2012. "The economics of decarbonizing the energy system—results and insights from the RECIPE model intercomparison," Climatic Change, Springer, vol. 114(1), pages 9-37, September.
    20. Roger Svensson, 2012. "Commercialization, renewal, and quality of patents," Economics of Innovation and New Technology, Taylor & Francis Journals, vol. 21(2), pages 175-201, February.
    21. Zvi Griliches, 1998. "Patent Statistics as Economic Indicators: A Survey," NBER Chapters, in: R&D and Productivity: The Econometric Evidence, pages 287-343, National Bureau of Economic Research, Inc.
    22. Wesley M. Cohen & Richard R. Nelson & John P. Walsh, 2000. "Protecting Their Intellectual Assets: Appropriability Conditions and Why U.S. Manufacturing Firms Patent (or Not)," NBER Working Papers 7552, National Bureau of Economic Research, Inc.
    23. Yann Ménière & Antoine Dechezleprêtre & Matthieu Glachant & Ivan Hascic & N. Johnstone, 2011. "Invention and transfer of climate change mitigation technologies: a study drawing on patent data," Post-Print hal-00869795, HAL.
    24. Zdenka Myslikova & Kelly Sims Gallagher, 2020. "Mission Innovation is mission critical," Nature Energy, Nature, vol. 5(10), pages 732-734, October.
    25. David Popp, 2002. "Induced Innovation and Energy Prices," American Economic Review, American Economic Association, vol. 92(1), pages 160-180, March.
    26. Antoine Dechezleprêtre & Matthieu Glachant & Ivan Haščič & Nick Johnstone & Yann Ménière, 2011. "Invention and Transfer of Climate Change--Mitigation Technologies: A Global Analysis," Review of Environmental Economics and Policy, Association of Environmental and Resource Economists, vol. 5(1), pages 109-130, Winter.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Harilal Krishna & Yash Kashyap & Dwarkeshwar Dutt & Ambuj D. Sagar & Abhishek Malhotra, 2023. "Understanding India’s low-carbon energy technology startup landscape," Nature Energy, Nature, vol. 8(1), pages 94-105, January.
    2. Scheifele, F. & Bräuning, M. & Probst, B., 2022. "The impact of local content requirements on the development of export competitiveness in solar and wind technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    3. Jonas Meckling & Clara Galeazzi & Esther Shears & Tong Xu & Laura Diaz Anadon, 2022. "Energy innovation funding and institutions in major economies," Nature Energy, Nature, vol. 7(9), pages 876-885, September.
    4. Aliénor Cameron & Marc Baudry, 2022. "The case for a Carbon Border Adjustment: Where do economists stand?," Policy Papers 2022.01, FAERE - French Association of Environmental and Resource Economists.
    5. Athreye, Suma & Kathuria, Vinish & Martelli, Alessandro & Piscitello, Lucia, 2023. "Intellectual property rights and the international transfer of climate change mitigating technologies," Research Policy, Elsevier, vol. 52(9).
    6. Zhang, Jianhua & Ballas, Dimitris & Liu, Xiaolong, 2024. "Global climate change mitigation technology diffusion: A network perspective," Energy Economics, Elsevier, vol. 133(C).
    7. Che, Xiao-Jing & Zhou, P. & Wang, M., 2022. "The policy effect on photovoltaic technology innovation with regional heterogeneity in China," Energy Economics, Elsevier, vol. 115(C).
    8. Xiang, Xiwang & Ma, Minda & Ma, Xin & Chen, Liming & Cai, Weiguang & Feng, Wei & Ma, Zhili, 2022. "Historical decarbonization of global commercial building operations in the 21st century," Applied Energy, Elsevier, vol. 322(C).
    9. Doblinger, Claudia & Surana, Kavita & Li, Deyu & Hultman, Nathan & Anadón, Laura Díaz, 2022. "How do global manufacturing shifts affect long-term clean energy innovation? A study of wind energy suppliers," Research Policy, Elsevier, vol. 51(7).
    10. Aïd, René & Bahlali, Mohamed & Creti, Anna, 2023. "Green innovation downturn: The role of imperfect competition," Energy Economics, Elsevier, vol. 123(C).
    11. Wang, Jun-Zhuo & Feng, Gen-Fu & Yin, Hua-Tang & Chang, Chun-Ping, 2023. "Toward sustainable development: Does the rising oil price stimulate innovation in climate change mitigation technologies?," Economic Analysis and Policy, Elsevier, vol. 79(C), pages 569-583.
    12. Aliénor Cameron & Marc Baudry, 2023. "The case for carbon leakage and border adjustments: where do economists stand?," Environmental Economics and Policy Studies, Springer;Society for Environmental Economics and Policy Studies - SEEPS, vol. 25(3), pages 435-469, July.
    13. Münch, Florian Anselm & Scheifele, Fabian, 2023. "Nurturing national champions? Local content in solar auctions and firm innovation," Energy Policy, Elsevier, vol. 179(C).
    14. Lohmann, Paul M. & Probst, Benedict & Gsottbauer, Elisabeth & Kontoleon, Andreas, 2024. "High levels of air pollution reduce team performance," Journal of Economic Psychology, Elsevier, vol. 101(C).
    15. Rik L. Rozendaal & Herman R. J. Vollebergh, 2021. "Policy-Induced Innovation in Clean Technologies: Evidence from the Car Market," CESifo Working Paper Series 9422, CESifo.
    16. Chunjuan Luan & Siming Deng & John R. Allison, 2022. "Mutual Granger “causality” between scientific instruments and scientific publications," Scientometrics, Springer;Akadémiai Kiadó, vol. 127(11), pages 6209-6229, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bruns, Stephan B. & Kalthaus, Martin, 2020. "Flexibility in the selection of patent counts: Implications for p-hacking and evidence-based policymaking," Research Policy, Elsevier, vol. 49(1).
    2. Mare Sarr & Joëlle Noailly, 2017. "Innovation, Diffusion, Growth and the Environment: Taking Stock and Charting New Directions," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 66(3), pages 393-407, March.
    3. Costantini, Valeria & Crespi, Francesco & Palma, Alessandro, 2017. "Characterizing the policy mix and its impact on eco-innovation: A patent analysis of energy-efficient technologies," Research Policy, Elsevier, vol. 46(4), pages 799-819.
    4. Jingbo Cui & Zhenxuan Wang & Haishan Yu, 2022. "Can International Climate Cooperation Induce Knowledge Spillover to Developing Countries? Evidence from CDM," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 82(4), pages 923-951, August.
    5. Hémous, David & Dechezleprêtre, Antoine & Olsen, Morten & Zanella, carlo, 2019. "Automating Labor: Evidence from Firm-level Patent Data," CEPR Discussion Papers 14249, C.E.P.R. Discussion Papers.
    6. Massimiliano Mazzanti & Antonio Musolesi, 2020. "Modeling Green Knowledge Production and Environmental Policies with Semiparametric Panel Data Regression models," SEEDS Working Papers 1420, SEEDS, Sustainability Environmental Economics and Dynamics Studies, revised Sep 2020.
    7. Antoine Dechezleprêtre & Matthieu Glachant, 2014. "Does Foreign Environmental Policy Influence Domestic Innovation? Evidence from the Wind Industry," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 58(3), pages 391-413, July.
    8. Declan Conway & Antoine Dechezleprêtre & Ivan Haščič & Nick Johnstone, 2015. "Invention and Diffusion of Water Supply and Water Efficiency Technologies: Insights from a Global Patent Dataset," Water Economics and Policy (WEP), World Scientific Publishing Co. Pte. Ltd., vol. 1(04), pages 1-34, December.
    9. Antoine Dechezleprêtre & Yann Ménière & Myra Mohnen, 2017. "International patent families: from application strategies to statistical indicators," Scientometrics, Springer;Akadémiai Kiadó, vol. 111(2), pages 793-828, May.
    10. Herman, Kyle S. & Xiang, Jun, 2019. "Induced innovation in clean energy technologies from foreign environmental policy stringency?," Technological Forecasting and Social Change, Elsevier, vol. 147(C), pages 198-207.
    11. Garsous, Grégoire & Worack, Stephan, 2022. "Technological expertise as a driver of environmental technology diffusion through trade: Evidence from the wind turbine manufacturing industry," Energy Policy, Elsevier, vol. 162(C).
    12. Dechezlepretre, Antoine & Perkins, Richard & Neumayer, Eric, 2012. "Regulatory Distance and the Transfer of New Environmentally Sound Technologies: Evidence from the Automobile Sector," Climate Change and Sustainable Development 128199, Fondazione Eni Enrico Mattei (FEEM).
    13. Valeria Costantini & Francesco Crespi & Alessandro Palma, 2015. "Characterizing the policy mix and its impact on eco-innovation in energy-efficient technologies," SEEDS Working Papers 1115, SEEDS, Sustainability Environmental Economics and Dynamics Studies, revised Jun 2015.
    14. Clement Bonnet, 2020. "Measuring Knowledge with Patent Data: an Application to Low Carbon Energy Technologies," Working Papers hal-02971680, HAL.
    15. Antoine Dechezleprêtre & Matthieu Glachant & Yann Ménière, 2013. "What Drives the International Transfer of Climate Change Mitigation Technologies? Empirical Evidence from Patent Data," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 54(2), pages 161-178, February.
    16. Yan, Zheming & Du, Keru & Yang, Zhiming & Deng, Min, 2017. "Convergence or divergence? Understanding the global development trend of low-carbon technologies," Energy Policy, Elsevier, vol. 109(C), pages 499-509.
    17. Dechezleprêtre, Antoine & Neumayer, Eric & Perkins, Richard, 2015. "Environmental regulation and the cross-border diffusion of new technology: Evidence from automobile patents," Research Policy, Elsevier, vol. 44(1), pages 244-257.
    18. Tomasz Kijek & Arkadiusz Kijek & Piotr Bolibok & Anna Matras-Bolibok, 2021. "The Patterns of Energy Innovation Convergence across European Countries," Energies, MDPI, vol. 14(10), pages 1-17, May.
    19. Patricia Laurens & Christian Bas & Antoine Schoen & Stéphane Lhuillery, 2016. "Technological contribution of MNEs to the growth of energy-greentech sector in the early post-Kyoto period," Environmental Economics and Policy Studies, Springer;Society for Environmental Economics and Policy Studies - SEEPS, vol. 18(2), pages 169-191, April.
    20. Dolphin, G. & Pollitt, M., 2020. "Identifying Innovative Actors in the Electricicity Supply Industry Using Machine Learning: An Application to UK Patent Data," Cambridge Working Papers in Economics 2013, Faculty of Economics, University of Cambridge.

    More about this item

    JEL classification:

    • R14 - Urban, Rural, Regional, Real Estate, and Transportation Economics - - General Regional Economics - - - Land Use Patterns
    • J01 - Labor and Demographic Economics - - General - - - Labor Economics: General

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ehl:lserod:112775. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: LSERO Manager (email available below). General contact details of provider: https://edirc.repec.org/data/lsepsuk.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.