Nothing Special   »   [go: up one dir, main page]

IDEAS home Printed from https://ideas.repec.org/p/gue/guelph/2006-4.html
   My bibliography  Save this paper

Information-Theoretic Distribution Test with Application to Normality

Author

Listed:
  • Thanasis Stengos

    (Department of Economics, University of Guelph.)

  • Ximing Wu

    (Department of Agricultural Economics, Texas A&M University and Department of Economics, University of Guelph.)

Abstract
We derive general distribution tests based on the method of Maximum Entropy density. The proposed tests are derived from maximizing the di®erential entropy subject to moment constraints. By exploiting the equivalence between the Maximum Entropy and Maximum Likelihood estimates of the general exponential family, we can use the conventional Likelihood Ratio, Wald and Lagrange Multiplier testing principles in the maximum entropy framework. In particular, we use the Lagrange Multiplier method to derive tests for normality and their asymptotic properties. Monte Carlo evidence suggests that the proposed tests have desirable small sample properties and often outperform commonly used tests such as the Jarque-Bera test and the Kolmogorov-Smirnov-Lillie test for normality. We show that the proposed tests can be extended totests based on regression residuals and non-iid data in a straightforward manner. We apply the proposed tests to the residuals from a stochastic production frontier model and reject the normality hypothesis.

Suggested Citation

  • Thanasis Stengos & Ximing Wu, 2006. "Information-Theoretic Distribution Test with Application to Normality," Working Papers 0604, University of Guelph, Department of Economics and Finance.
  • Handle: RePEc:gue:guelph:2006-4
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Bontemps, Christian & Meddahi, Nour, 2005. "Testing normality: a GMM approach," Journal of Econometrics, Elsevier, vol. 124(1), pages 149-186, January.
    2. D. Ormoneit & H. White, 1999. "An efficient algorithm to compute maximum entropy densities," Econometric Reviews, Taylor & Francis Journals, vol. 18(2), pages 127-140.
    3. Yuichi Kitamura, 2006. "Empirical Likelihood Methods in Econometrics: Theory and Practice," Levine's Bibliography 321307000000000307, UCLA Department of Economics.
    4. Yiguo Sun & Thanasis Stengos, 2008. "The absolute health income hypothesis revisited: a semiparametric quantile regression approach," Empirical Economics, Springer, vol. 35(2), pages 395-412, September.
    5. Smith, Richard J., 2011. "Gel Criteria For Moment Condition Models," Econometric Theory, Cambridge University Press, vol. 27(6), pages 1192-1235, December.
    6. Zellner, Arnold & Highfield, Richard A., 1988. "Calculation of maximum entropy distributions and approximation of marginalposterior distributions," Journal of Econometrics, Elsevier, vol. 37(2), pages 195-209, February.
    7. Gallant, A. Ronald, 1981. "On the bias in flexible functional forms and an essentially unbiased form : The fourier flexible form," Journal of Econometrics, Elsevier, vol. 15(2), pages 211-245, February.
    8. Ximing Wu & Thanasis Stengos, 2005. "Partially adaptive estimation via the maximum entropy densities," Econometrics Journal, Royal Economic Society, vol. 8(3), pages 352-366, December.
    9. Guido W. Imbens & Richard H. Spady & Phillip Johnson, 1998. "Information Theoretic Approaches to Inference in Moment Condition Models," Econometrica, Econometric Society, vol. 66(2), pages 333-358, March.
    10. Jushan Bai & Serena Ng, 2005. "Tests for Skewness, Kurtosis, and Normality for Time Series Data," Journal of Business & Economic Statistics, American Statistical Association, vol. 23, pages 49-60, January.
    11. Engle, Robert F., 1984. "Wald, likelihood ratio, and Lagrange multiplier tests in econometrics," Handbook of Econometrics, in: Z. Griliches† & M. D. Intriligator (ed.), Handbook of Econometrics, edition 1, volume 2, chapter 13, pages 775-826, Elsevier.
    12. Dalén, Jörgen, 1987. "Algebraic bounds on standardized sample moments," Statistics & Probability Letters, Elsevier, vol. 5(5), pages 329-331, August.
    13. Wu, Ximing, 2003. "Calculation of maximum entropy densities with application to income distribution," Journal of Econometrics, Elsevier, vol. 115(2), pages 347-354, August.
    14. Richard Smith, 2005. "Local GEL methods for conditional moment restrictions," CeMMAP working papers CWP15/05, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    15. Golan, Amos & Judge, George G. & Miller, Douglas, 1996. "Maximum Entropy Econometrics," Staff General Research Papers Archive 1488, Iowa State University, Department of Economics.
    16. Yuichi Kitamura, 2006. "Empirical Likelihood Methods in Econometrics: Theory and Practice," Cowles Foundation Discussion Papers 1569, Cowles Foundation for Research in Economics, Yale University.
    17. Christensen, Laurits R & Greene, William H, 1976. "Economies of Scale in U.S. Electric Power Generation," Journal of Political Economy, University of Chicago Press, vol. 84(4), pages 655-676, August.
    18. Yuichi Kitamura, 2006. "Empirical Likelihood Methods in Econometrics: Theory and Practice," CIRJE F-Series CIRJE-F-430, CIRJE, Faculty of Economics, University of Tokyo.
    19. Bera, Anil K. & Jarque, Carlos M., 1981. "Efficient tests for normality, homoscedasticity and serial independence of regression residuals : Monte Carlo Evidence," Economics Letters, Elsevier, vol. 7(4), pages 313-318.
    20. White, Halbert, 1982. "Maximum Likelihood Estimation of Misspecified Models," Econometrica, Econometric Society, vol. 50(1), pages 1-25, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tack, Jesse, 2013. "A Nested Test for Common Yield Distributions with Applications to U.S. Corn," Journal of Agricultural and Resource Economics, Western Agricultural Economics Association, vol. 38(1), pages 1-14, April.
    2. Ekrem Kilic, 2005. "A Nonparametric Way of Distribution Testing," Econometrics 0510006, University Library of Munich, Germany.
    3. Lee Tae-Hwy & Wang He & Xi Zhou & Zhang Ru, 2023. "Density Forecast of Financial Returns Using Decomposition and Maximum Entropy," Journal of Econometric Methods, De Gruyter, vol. 12(1), pages 57-83, January.
    4. Meniago, Christelle & Mukuddem-Petersen, Janine & Petersen, Mark A. & Mongale, Itumeleng P., 2013. "What causes household debt to increase in South Africa?," Economic Modelling, Elsevier, vol. 33(C), pages 482-492.
    5. Hend Auda, 2013. "Novel symmetry tests in regression models based on Gini mean difference," METRON, Springer;Sapienza Università di Roma, vol. 71(1), pages 21-32, June.
    6. Marc S. Paolella, 2015. "New Graphical Methods and Test Statistics for Testing Composite Normality," Econometrics, MDPI, vol. 3(3), pages 1-29, July.
    7. Fournier, B. & Rupin, N. & Bigerelle, M. & Najjar, D. & Iost, A. & Wilcox, R., 2007. "Estimating the parameters of a generalized lambda distribution," Computational Statistics & Data Analysis, Elsevier, vol. 51(6), pages 2813-2835, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Theodore Panagiotidis & Georgios Papapanagiotou, 2024. "A note on the determinants of NFTs returns," Working Paper series 24-07, Rimini Centre for Economic Analysis.
    2. Wu, Ximing & Perloff, Jeffrey M., 2007. "Information-Theoretic Deconvolution Approximation of Treatment Effect Distribution," Department of Agricultural & Resource Economics, UC Berkeley, Working Paper Series qt9vd036zx, Department of Agricultural & Resource Economics, UC Berkeley.
    3. Yiguo Sun & Thanasis Stengos, 2008. "The absolute health income hypothesis revisited: a semiparametric quantile regression approach," Empirical Economics, Springer, vol. 35(2), pages 395-412, September.
    4. Wu, Ximing & Perloff, Jeffrey M., 2007. "Information-Theoretic Deconvolution Approximation of Treatment Effect Distribution," Department of Agricultural & Resource Economics, UC Berkeley, Working Paper Series qt9vd036zx, Department of Agricultural & Resource Economics, UC Berkeley.
    5. Prosper Dovonon, 2016. "Large Sample Properties of the Three-Step Euclidean Likelihood Estimators under Model Misspecification," Econometric Reviews, Taylor & Francis Journals, vol. 35(4), pages 465-514, April.
    6. Wu, Ximing & Perloff, Jeffrey M., 2005. "GMM Estimation of a Maximum Distribution With Interval Data," Department of Agricultural & Resource Economics, UC Berkeley, Working Paper Series qt7jf5w1ht, Department of Agricultural & Resource Economics, UC Berkeley.
    7. Yuichi Kitamura & Taisuke Otsu & Kirill Evdokimov, 2013. "Robustness, Infinitesimal Neighborhoods, and Moment Restrictions," Econometrica, Econometric Society, vol. 81(3), pages 1185-1201, May.
    8. Anisha Ghosh & Christian Julliard & Alex P. Taylor, 2017. "What Is the Consumption-CAPM Missing? An Information-Theoretic Framework for the Analysis of Asset Pricing Models," The Review of Financial Studies, Society for Financial Studies, vol. 30(2), pages 442-504.
    9. Stefan Boes, 2007. "Count Data Models with Unobserved Heterogeneity: An Empirical Likelihood Approach," SOI - Working Papers 0704, Socioeconomic Institute - University of Zurich.
    10. Bontemps, Christian & Meddahi, Nour, 2005. "Testing normality: a GMM approach," Journal of Econometrics, Elsevier, vol. 124(1), pages 149-186, January.
    11. Xiao, Zhiguo, 2010. "The weighted method of moments approach for moment condition models," Economics Letters, Elsevier, vol. 107(2), pages 183-186, May.
    12. Ximing Wu & Thanasis Stengos, 2005. "Partially adaptive estimation via the maximum entropy densities," Econometrics Journal, Royal Economic Society, vol. 8(3), pages 352-366, December.
    13. Xu, Ke-Li, 2020. "Inference of local regression in the presence of nuisance parameters," Journal of Econometrics, Elsevier, vol. 218(2), pages 532-560.
    14. Wu, Ximing, 2010. "Exponential Series Estimator of multivariate densities," Journal of Econometrics, Elsevier, vol. 156(2), pages 354-366, June.
    15. Liao, Yuan & Jiang, Wenxin, 2011. "Posterior consistency of nonparametric conditional moment restricted models," MPRA Paper 38700, University Library of Munich, Germany.
    16. Devereux, Paul J. & Tripathi, Gautam, 2009. "Optimally combining censored and uncensored datasets," Journal of Econometrics, Elsevier, vol. 151(1), pages 17-32, July.
    17. Alain Guay & Florian Pelgrin, 2016. "Using Implied Probabilities to Improve the Estimation of Unconditional Moment Restrictions for Weakly Dependent Data," Econometric Reviews, Taylor & Francis Journals, vol. 35(3), pages 344-372, March.
    18. Canay, Ivan A., 2010. "EL inference for partially identified models: Large deviations optimality and bootstrap validity," Journal of Econometrics, Elsevier, vol. 156(2), pages 408-425, June.
    19. Holly, Alberto & Monfort, Alain & Rockinger, Michael, 2011. "Fourth order pseudo maximum likelihood methods," Journal of Econometrics, Elsevier, vol. 162(2), pages 278-293, June.
    20. Tue Gørgens & Allan Würtz, 2012. "Testing a parametric function against a non‐parametric alternative in IV and GMM settings," Econometrics Journal, Royal Economic Society, vol. 15(3), pages 462-489, October.

    More about this item

    Keywords

    distribution test; maximum entropy; normality.;
    All these keywords.

    JEL classification:

    • C1 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General
    • C12 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Hypothesis Testing: General
    • C16 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Econometric and Statistical Methods; Specific Distributions

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gue:guelph:2006-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Stephen Kosempel (email available below). General contact details of provider: https://edirc.repec.org/data/degueca.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.