Nothing Special   »   [go: up one dir, main page]

IDEAS home Printed from https://ideas.repec.org/p/got/gotcrc/203.html
   My bibliography  Save this paper

Comparing the market risk premia forecasts in JSE and NYSE equity markets

Author

Listed:
  • Leoni Eleni Oikonomikou

    (Georg-August University Göttingen)

Abstract
This paper examines the evidence regarding predictability in the market risk premium using artificial neural networks (ANNs), namely the Elman Network (EN) and the Higher Order Neural network (HONN), univariate ARMA and exponential smoothing techniques, such as Single Exponential Smoothing (SES) and Exponentially Weighted Moving Average (EWMA). The contribution of this paper is the inclusion of the South African market risk premium to the forecasting exercise and its direct comparison with US forecasting results. The market risk premium is defined as the expected rate of return on the market portfolio in excess of the shortterm interest rate for each market. All data are taken from January 2007 till December 2014 on a daily basis. Elman networks provide superior results among the tested models in both insample and out-of sample periods as well as among the tested markets. In general, neural networks beat the naive benchmark model and achieve to perform better than the rest of their linear tested counterparts. The forecasting models successfully capture patterns in the data that improve the forecasting accuracy of the tested models. Therefore, they can be applied to trading and investment purposes.

Suggested Citation

  • Leoni Eleni Oikonomikou, 2016. "Comparing the market risk premia forecasts in JSE and NYSE equity markets," Courant Research Centre: Poverty, Equity and Growth - Discussion Papers 203, Courant Research Centre PEG.
  • Handle: RePEc:got:gotcrc:203
    as

    Download full text from publisher

    File URL: http://www2.vwl.wiso.uni-goettingen.de/courant-papers/CRC-PEG_DP_203.pdf
    Download Restriction: no
    ---><---

    More about this item

    Keywords

    forecasting performance; market risk premium; South African stock market; US stock market;
    All these keywords.

    JEL classification:

    • C45 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods: Special Topics - - - Neural Networks and Related Topics
    • C52 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Evaluation, Validation, and Selection
    • G15 - Financial Economics - - General Financial Markets - - - International Financial Markets
    • G17 - Financial Economics - - General Financial Markets - - - Financial Forecasting and Simulation

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:got:gotcrc:203. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Dominik Noe (email available below). General contact details of provider: http://www.uni-goettingen.de/en/82144.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.