Nothing Special   »   [go: up one dir, main page]

IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2202.11314.html
   My bibliography  Save this paper

Optimal Investment in a Large Population of Competitive and Heterogeneous Agents

Author

Listed:
  • Ludovic Tangpi
  • Xuchen Zhou
Abstract
This paper studies a stochastic utility maximization game under relative performance concerns in finite agent and infinite agent settings, where a continuum of agents interact through a graphon (see definition below). We consider an incomplete market model in which agents have CARA utilities, and we obtain characterizations of Nash equilibria in both the finite agent and graphon paradigms. Under modest assumptions on the denseness of the interaction graph among the agents, we establish convergence results for the Nash equilibria and optimal utilities of the finite player problem to the infinite player problem. This result is achieved as an application of a general backward propagation of chaos type result for systems of interacting forward-backward stochastic differential equations, where the interaction is heterogeneous and through the control processes, and the generator is of quadratic growth. In addition, characterizing the graphon game gives rise to a novel form of infinite dimensional forward-backward stochastic differential equation of Mckean-Vlasov type, for which we provide well-posedness results. An interesting consequence of our result is the computation of the competition indifference capital, i.e., the capital making an investor indifferent between whether or not to compete.

Suggested Citation

  • Ludovic Tangpi & Xuchen Zhou, 2022. "Optimal Investment in a Large Population of Competitive and Heterogeneous Agents," Papers 2202.11314, arXiv.org, revised Feb 2023.
  • Handle: RePEc:arx:papers:2202.11314
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2202.11314
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ruimeng Hu & Thaleia Zariphopoulou, 2021. "$N$-player and Mean-field Games in It\^{o}-diffusion Markets with Competitive or Homophilous Interaction," Papers 2106.00581, arXiv.org, revised Jun 2021.
    2. Michail Anthropelos & Tianran Geng & Thaleia Zariphopoulou, 2020. "Competition in Fund Management and Forward Relative Performance Criteria," Papers 2011.00838, arXiv.org.
    3. Freddy Delbaen & Peter Grandits & Thorsten Rheinländer & Dominick Samperi & Martin Schweizer & Christophe Stricker, 2002. "Exponential Hedging and Entropic Penalties," Mathematical Finance, Wiley Blackwell, vol. 12(2), pages 99-123, April.
    4. Kupper, Michael & Luo, Peng & Tangpi, Ludovic, 2019. "Multidimensional Markovian FBSDEs with super-quadratic growth," Stochastic Processes and their Applications, Elsevier, vol. 129(3), pages 902-923.
    5. Daniel Lacker & Thaleia Zariphopoulou, 2019. "Mean field and n‐agent games for optimal investment under relative performance criteria," Mathematical Finance, Wiley Blackwell, vol. 29(4), pages 1003-1038, October.
    6. Goncalo dos Reis & Vadim Platonov, 2020. "Forward utility and market adjustments in relative investment-consumption games of many players," Papers 2012.01235, arXiv.org, revised Mar 2022.
    7. Ying Hu & Peter Imkeller & Matthias Muller, 2005. "Utility maximization in incomplete markets," Papers math/0508448, arXiv.org.
    8. Briand, Philippe & Elie, Romuald, 2013. "A simple constructive approach to quadratic BSDEs with or without delay," Stochastic Processes and their Applications, Elsevier, vol. 123(8), pages 2921-2939.
    9. Guanxing Fu & Xizhi Su & Chao Zhou, 2020. "Mean Field Exponential Utility Game: A Probabilistic Approach," Papers 2006.07684, arXiv.org, revised Jul 2020.
    10. Frei, Christoph, 2014. "Splitting multidimensional BSDEs and finding local equilibria," Stochastic Processes and their Applications, Elsevier, vol. 124(8), pages 2654-2671.
    11. Sun, Yeneng, 2006. "The exact law of large numbers via Fubini extension and characterization of insurable risks," Journal of Economic Theory, Elsevier, vol. 126(1), pages 31-69, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Guanxing Fu, 2022. "Mean Field Portfolio Games with Consumption," Papers 2206.05425, arXiv.org, revised Dec 2022.
    2. Guanxing Fu & Chao Zhou, 2021. "Mean Field Portfolio Games," Papers 2106.06185, arXiv.org, revised Apr 2022.
    3. Guanxing Fu, 2023. "Mean field portfolio games with consumption," Mathematics and Financial Economics, Springer, volume 17, number 4, December.
    4. Guanxing Fu & Xizhi Su & Chao Zhou, 2020. "Mean Field Exponential Utility Game: A Probabilistic Approach," Papers 2006.07684, arXiv.org, revised Jul 2020.
    5. Masaaki Fujii & Masashi Sekine, 2023. "Mean-field Equilibrium Price Formation with Exponential Utility," CIRJE F-Series CIRJE-F-1210, CIRJE, Faculty of Economics, University of Tokyo.
    6. Nam, Kihun, 2021. "Locally Lipschitz BSDE driven by a continuous martingale a path-derivative approach," Stochastic Processes and their Applications, Elsevier, vol. 141(C), pages 376-411.
    7. Goncalo dos Reis & Vadim Platonov, 2020. "Forward utility and market adjustments in relative investment-consumption games of many players," Papers 2012.01235, arXiv.org, revised Mar 2022.
    8. Guanxing Fu & Chao Zhou, 2023. "Mean field portfolio games," Finance and Stochastics, Springer, vol. 27(1), pages 189-231, January.
    9. Lijun Bo & Shihua Wang & Xiang Yu, 2022. "A mean field game approach to equilibrium consumption under external habit formation," Papers 2206.13341, arXiv.org, revised Mar 2024.
    10. Masaaki Fujii & Masashi Sekine, 2023. "Mean-field equilibrium price formation with exponential utility," Papers 2304.07108, arXiv.org, revised Oct 2023.
    11. Masaaki Fujii & Masashi Sekine, 2023. "Mean-field equilibrium price formation with exponential utility," CARF F-Series CARF-F-559, Center for Advanced Research in Finance, Faculty of Economics, The University of Tokyo.
    12. Lijun Bo & Shihua Wang & Xiang Yu, 2021. "Mean Field Game of Optimal Relative Investment with Jump Risk," Papers 2108.00799, arXiv.org, revised Feb 2023.
    13. Jeong Yin Park, 2022. "Optimal portfolio selection of many players under relative performance criteria in the market model with random coefficients," Papers 2209.07411, arXiv.org.
    14. Dmitry Kramkov & Sergio Pulido, 2014. "Stability and analytic expansions of local solutions of systems of quadratic BSDEs with applications to a price impact model," Papers 1410.6144, arXiv.org, revised Aug 2016.
    15. Hu, Ying & Lin, Yiqing & Soumana Hima, Abdoulaye, 2018. "Quadratic backward stochastic differential equations driven by G-Brownian motion: Discrete solutions and approximation," Stochastic Processes and their Applications, Elsevier, vol. 128(11), pages 3724-3750.
    16. Daniel Bartl, 2016. "Exponential utility maximization under model uncertainty for unbounded endowments," Papers 1610.00999, arXiv.org, revised Feb 2019.
    17. repec:hal:wpaper:hal-01147411 is not listed on IDEAS
    18. Ying Hu & Gechun Liang & Shanjian Tang, 2018. "Systems of ergodic BSDEs arising in regime switching forward performance processes," Papers 1807.01816, arXiv.org, revised Jun 2020.
    19. Nicole Bäuerle & Tamara Göll, 2023. "Nash equilibria for relative investors via no-arbitrage arguments," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 97(1), pages 1-23, February.
    20. Chong, Wing Fung, 2019. "Pricing and hedging equity-linked life insurance contracts beyond the classical paradigm: The principle of equivalent forward preferences," Insurance: Mathematics and Economics, Elsevier, vol. 88(C), pages 93-107.
    21. Bayraktar, Erhan & Kravitz, Ross, 2013. "Stability of exponential utility maximization with respect to market perturbations," Stochastic Processes and their Applications, Elsevier, vol. 123(5), pages 1671-1690.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2202.11314. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.