Nothing Special   »   [go: up one dir, main page]

IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1312.1645.html
   My bibliography  Save this paper

What is the best risk measure in practice? A comparison of standard measures

Author

Listed:
  • Susanne Emmer
  • Marie Kratz
  • Dirk Tasche
Abstract
Expected Shortfall (ES) has been widely accepted as a risk measure that is conceptually superior to Value-at-Risk (VaR). At the same time, however, it has been criticised for issues relating to backtesting. In particular, ES has been found not to be elicitable which means that backtesting for ES is less straightforward than, e.g., backtesting for VaR. Expectiles have been suggested as potentially better alternatives to both ES and VaR. In this paper, we revisit commonly accepted desirable properties of risk measures like coherence, comonotonic additivity, robustness and elicitability. We check VaR, ES and Expectiles with regard to whether or not they enjoy these properties, with particular emphasis on Expectiles. We also consider their impact on capital allocation, an important issue in risk management. We find that, despite the caveats that apply to the estimation and backtesting of ES, it can be considered a good risk measure. As a consequence, there is no sufficient evidence to justify an all-inclusive replacement of ES by Expectiles in applications. For backtesting ES, we propose an empirical approach that consists in replacing ES by a set of four quantiles, which should allow to make use of backtesting methods for VaR. Keywords: Backtesting; capital allocation; coherence; diversification; elicitability; expected shortfall; expectile; forecasts; probability integral transform (PIT); risk measure; risk management; robustness; value-at-risk

Suggested Citation

  • Susanne Emmer & Marie Kratz & Dirk Tasche, 2013. "What is the best risk measure in practice? A comparison of standard measures," Papers 1312.1645, arXiv.org, revised Apr 2015.
  • Handle: RePEc:arx:papers:1312.1645
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1312.1645
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Yamai, Yasuhiro & Yoshiba, Toshinao, 2005. "Value-at-risk versus expected shortfall: A practical perspective," Journal of Banking & Finance, Elsevier, vol. 29(4), pages 997-1015, April.
    2. repec:hal:journl:hal-00880258 is not listed on IDEAS
    3. H. A. Hauksson & M. Dacorogna & T. Domenig & U. Mller & G. Samorodnitsky, 2001. "Multivariate extremes, aggregation and risk estimation," Quantitative Finance, Taylor & Francis Journals, vol. 1(1), pages 79-95.
    4. Harry Markowitz, 1952. "Portfolio Selection," Journal of Finance, American Finance Association, vol. 7(1), pages 77-91, March.
    5. Acerbi, Carlo & Tasche, Dirk, 2002. "On the coherence of expected shortfall," Journal of Banking & Finance, Elsevier, vol. 26(7), pages 1487-1503, July.
    6. Christoffersen, Peter, 2011. "Elements of Financial Risk Management," Elsevier Monographs, Elsevier, edition 2, number 9780123744487.
    7. Rama Cont & Romain Deguest & Giacomo Scandolo, 2010. "Robustness and sensitivity analysis of risk measurement procedures," Quantitative Finance, Taylor & Francis Journals, vol. 10(6), pages 593-606.
    8. Elyès Jouini & Walter Schachermayer & Nizar Touzi, 2006. "Law Invariant Risk Measures Have the Fatou Property," Post-Print halshs-00176522, HAL.
    9. Susanne Emmer & Dirk Tasche, 2003. "Calculating credit risk capital charges with the one-factor model," Papers cond-mat/0302402, arXiv.org, revised Jan 2005.
    10. Clements,Michael & Hendry,David, 1998. "Forecasting Economic Time Series," Cambridge Books, Cambridge University Press, number 9780521634809, October.
    11. Embrechts, Paul & Puccetti, Giovanni & Rüschendorf, Ludger, 2013. "Model uncertainty and VaR aggregation," Journal of Banking & Finance, Elsevier, vol. 37(8), pages 2750-2764.
    12. Kratz , Marie, 2013. "There is a VaR Beyond Usual Approximations," ESSEC Working Papers WP1317, ESSEC Research Center, ESSEC Business School.
    13. Marie Kratz, 2013. "There is a VaR beyond usual approximations," Papers 1311.0270, arXiv.org.
    14. Francis X. Diebold & Jinyong Hahn & Anthony S. Tay, 1999. "Multivariate Density Forecast Evaluation And Calibration In Financial Risk Management: High-Frequency Returns On Foreign Exchange," The Review of Economics and Statistics, MIT Press, vol. 81(4), pages 661-673, November.
    15. Diebold, Francis X & Mariano, Roberto S, 2002. "Comparing Predictive Accuracy," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 134-144, January.
    16. Dirk Tasche, 2002. "Expected Shortfall and Beyond," Papers cond-mat/0203558, arXiv.org, revised Oct 2002.
    17. Michael Kalkbrener, 2005. "An Axiomatic Approach To Capital Allocation," Mathematical Finance, Wiley Blackwell, vol. 15(3), pages 425-437, July.
    18. Rama Cont & Romain Deguest & Giacomo Scandolo, 2010. "Robustness and sensitivity analysis of risk measurement procedures," Post-Print hal-00413729, HAL.
    19. Tasche, Dirk, 2002. "Expected shortfall and beyond," Journal of Banking & Finance, Elsevier, vol. 26(7), pages 1519-1533, July.
    20. Embrechts, Paul & Neslehová, Johanna & Wüthrich, Mario V., 2009. "Additivity properties for Value-at-Risk under Archimedean dependence and heavy-tailedness," Insurance: Mathematics and Economics, Elsevier, vol. 44(2), pages 164-169, April.
    21. Johanna F. Ziegel, 2013. "Coherence and elicitability," Papers 1303.1690, arXiv.org, revised Mar 2014.
    22. Philippe Artzner & Freddy Delbaen & Jean‐Marc Eber & David Heath, 1999. "Coherent Measures of Risk," Mathematical Finance, Wiley Blackwell, vol. 9(3), pages 203-228, July.
    23. repec:dau:papers:123456789/342 is not listed on IDEAS
    24. Dirk Tasche, 2007. "Capital Allocation to Business Units and Sub-Portfolios: the Euler Principle," Papers 0708.2542, arXiv.org, revised Jun 2008.
    25. Marie Kratz, 2013. "There is a VaR Beyond Usual Approximations," Working Papers hal-00880258, HAL.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Suzanne Emmer & Marie Kratz & Dirk Tasche, 2013. "What Is the Best Risk Measure in Practice? A Comparison of Standard Measures," Working Papers hal-00921283, HAL.
    2. repec:hal:journl:hal-00921283 is not listed on IDEAS
    3. Marcelo Brutti Righi & Paulo Sergio Ceretta, 2015. "Shortfall Deviation Risk: An alternative to risk measurement," Papers 1501.02007, arXiv.org, revised May 2016.
    4. Marie Kratz & Yen H Lok & Alexander J Mcneil, 2016. "Multinomial var backtests: A simple implicit approach to backtesting expected shortfall," Working Papers hal-01424279, HAL.
    5. Steven Kou & Xianhua Peng, 2014. "On the Measurement of Economic Tail Risk," Papers 1401.4787, arXiv.org, revised Aug 2015.
    6. Adam, Alexandre & Houkari, Mohamed & Laurent, Jean-Paul, 2008. "Spectral risk measures and portfolio selection," Journal of Banking & Finance, Elsevier, vol. 32(9), pages 1870-1882, September.
    7. Kratz, Marie & Lok, Y-H & McNeil, Alexander J., 2016. "Multinomial VaR Backtests: A simple implicit approach to backtesting expected shortfall," ESSEC Working Papers WP1617, ESSEC Research Center, ESSEC Business School.
    8. Kratz, Marie & Lok, Yen H. & McNeil, Alexander J., 2018. "Multinomial VaR backtests: A simple implicit approach to backtesting expected shortfall," Journal of Banking & Finance, Elsevier, vol. 88(C), pages 393-407.
    9. Del Brio, Esther B. & Mora-Valencia, Andrés & Perote, Javier, 2020. "Risk quantification for commodity ETFs: Backtesting value-at-risk and expected shortfall," International Review of Financial Analysis, Elsevier, vol. 70(C).
    10. Alexander, Gordon J. & Baptista, Alexandre M. & Yan, Shu, 2012. "When more is less: Using multiple constraints to reduce tail risk," Journal of Banking & Finance, Elsevier, vol. 36(10), pages 2693-2716.
    11. Martin Herdegen & Cosimo Munari, 2023. "An elementary proof of the dual representation of Expected Shortfall," Papers 2306.14506, arXiv.org.
    12. repec:hal:journl:hal-00880258 is not listed on IDEAS
    13. Steven Kou & Xianhua Peng, 2016. "On the Measurement of Economic Tail Risk," Operations Research, INFORMS, vol. 64(5), pages 1056-1072, October.
    14. Ibragimov, Rustam & Walden, Johan, 2007. "The limits of diversification when losses may be large," Scholarly Articles 2624460, Harvard University Department of Economics.
    15. Marcelo Brutti Righi, 2018. "A theory for combinations of risk measures," Papers 1807.01977, arXiv.org, revised May 2023.
    16. Righi, Marcelo Brutti & Müller, Fernanda Maria & Moresco, Marlon Ruoso, 2020. "On a robust risk measurement approach for capital determination errors minimization," Insurance: Mathematics and Economics, Elsevier, vol. 95(C), pages 199-211.
    17. Dominique Guegan & Bertrand K Hassani, 2014. "Distortion Risk Measures or the Transformation of Unimodal Distributions into Multimodal Functions," Documents de travail du Centre d'Economie de la Sorbonne 14008, Université Panthéon-Sorbonne (Paris 1), Centre d'Economie de la Sorbonne.
    18. Johanna F. Ziegel, 2013. "Coherence and elicitability," Papers 1303.1690, arXiv.org, revised Mar 2014.
    19. Boonen, Tim J. & De Waegenaere, Anja & Norde, Henk, 2020. "A generalization of the Aumann–Shapley value for risk capital allocation problems," European Journal of Operational Research, Elsevier, vol. 282(1), pages 277-287.
    20. Liu, Peng & Wang, Ruodu & Wei, Linxiao, 2020. "Is the inf-convolution of law-invariant preferences law-invariant?," Insurance: Mathematics and Economics, Elsevier, vol. 91(C), pages 144-154.
    21. Ruodu Wang & Ričardas Zitikis, 2021. "An Axiomatic Foundation for the Expected Shortfall," Management Science, INFORMS, vol. 67(3), pages 1413-1429, March.
    22. Steven Kou & Xianhua Peng & Chris C. Heyde, 2013. "External Risk Measures and Basel Accords," Mathematics of Operations Research, INFORMS, vol. 38(3), pages 393-417, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1312.1645. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.