Nothing Special   »   [go: up one dir, main page]

IDEAS home Printed from https://ideas.repec.org/p/ags/aaea05/19255.html
   My bibliography  Save this paper

Pricing Weather Insurance with a Random Strike Price: An Application to the Ontario Ice Wine Harvest

Author

Listed:
  • Turvey, Calum G.
  • Weersink, Alfons
Abstract
Interest is growing in weather insurance within the agricultural sector but its use has been limited by the difficulty in defining the appropriate weather event and the lack of agreement on how to price the product. In this paper we develop a new insurance pricing method for weather insurance under situations where volume returns depend not only on the occurrence of the weather event, but also its timing. The method is applied to the pricing of weather insurance for ice wine in the Niagara Peninsula of southern Ontario. Because the harvest quantity of grapes for ice wine degrades over time, the strike value on the weather event measured as harvestable hours is random. This random strike, we developed a systematic approach to valuing the insurance using first, the single index model to capture inter-temporal covariance effects, and then a Monte Carlo simulation protocol to estimate the premium. While this study investigated a model unique to ice wine production in particular, the ideas can be extended to a number of other agricultural situations in which weather affects critical timing in the production process.

Suggested Citation

  • Turvey, Calum G. & Weersink, Alfons, 2005. "Pricing Weather Insurance with a Random Strike Price: An Application to the Ontario Ice Wine Harvest," 2005 Annual meeting, July 24-27, Providence, RI 19255, American Agricultural Economics Association (New Name 2008: Agricultural and Applied Economics Association).
  • Handle: RePEc:ags:aaea05:19255
    DOI: 10.22004/ag.econ.19255
    as

    Download full text from publisher

    File URL: https://ageconsearch.umn.edu/record/19255/files/sp05tu01.pdf
    Download Restriction: no

    File URL: https://libkey.io/10.22004/ag.econ.19255?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Kenneth A. Froot & Steven E. Posner, 2002. "The Pricing of Event Risks with Parameter Uncertainty," The Geneva Risk and Insurance Review, Palgrave Macmillan;International Association for the Study of Insurance Economics (The Geneva Association), vol. 27(2), pages 153-165, December.
    2. Sean D. Campbell & Francis X. Diebold, 2005. "Weather Forecasting for Weather Derivatives," Journal of the American Statistical Association, American Statistical Association, vol. 100, pages 6-16, March.
    3. William F. Sharpe, 1963. "A Simplified Model for Portfolio Analysis," Management Science, INFORMS, vol. 9(2), pages 277-293, January.
    4. Sharpe, William F., 1967. "Portfolio Analysis," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 2(2), pages 76-84, June.
    5. Karyl Leggio & Donald Lien, 2002. "Hedging gas bills with weather derivatives," Journal of Economics and Finance, Springer;Academy of Economics and Finance, vol. 26(1), pages 88-100, March.
    6. Richards, Timothy J. & Manfredo, Mark R. & Sanders, Dwight R., 2004. "Pricing Weather Derivatives," Working Papers 28536, Arizona State University, Morrison School of Agribusiness and Resource Management.
    7. Keith H. Coble & Thomas O. Knight & Rulon D. Pope & Jeffery R. Williams, 1997. "An Expected-Indemnity Approach to the Measurement of Moral Hazard in Crop Insurance," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 79(1), pages 216-226.
    8. John K. Horowitz & Erik Lichtenberg, 1993. "Insurance, Moral Hazard, and Chemical Use in Agriculture," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 75(4), pages 926-935.
    9. Jerry R. Skees & Panos Varangis & Donald F. Larson & Paul Siegel, 2002. "Can Financial Markets be Tapped to Help Poor People Cope with Weather Risks?," WIDER Working Paper Series DP2002-23, World Institute for Development Economic Research (UNU-WIDER).
    10. Calum G. Turvey, 2001. "Weather Derivatives for Specific Event Risks in Agriculture," Review of Agricultural Economics, Agricultural and Applied Economics Association, vol. 23(2), pages 333-351.
    11. Black, Fischer & Scholes, Myron S, 1973. "The Pricing of Options and Corporate Liabilities," Journal of Political Economy, University of Chicago Press, vol. 81(3), pages 637-654, May-June.
    12. Dwight R. Sanders, 2004. "Pricing Weather Derivatives," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 86(4), pages 1005-1017.
    13. Martin, Steven W. & Barnett, Barry J. & Coble, Keith H., 2001. "Developing And Pricing Precipitation Insurance," Journal of Agricultural and Resource Economics, Western Agricultural Economics Association, vol. 26(1), pages 1-14, July.
    14. Rubinstein, Ariel & Yaari, Menahem E., 1983. "Repeated insurance contracts and moral hazard," Journal of Economic Theory, Elsevier, vol. 30(1), pages 74-97, June.
    15. Peter Alaton & Boualem Djehiche & David Stillberger, 2002. "On modelling and pricing weather derivatives," Applied Mathematical Finance, Taylor & Francis Journals, vol. 9(1), pages 1-20.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ji Guo & Jiajia Jin & Yinshan Tang & Xianhua Wu, 2019. "Design of Temperature Insurance Index and Risk Zonation for Single-Season Rice in Response to High-Temperature and Low-Temperature Damage: A Case Study of Jiangsu Province, China," IJERPH, MDPI, vol. 16(7), pages 1-13, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Turvey, Calum G. & Norton, Michael, 2008. "An Internet-Based Tool for Weather Risk Management," Agricultural and Resource Economics Review, Cambridge University Press, vol. 37(1), pages 63-78, April.
    2. Lim, Terence & Lo, Andrew W. & Merton, Robert C. & Scholes, Myron S., 2006. "The Derivatives Sourcebook," Foundations and Trends(R) in Finance, now publishers, vol. 1(5–6), pages 365-572, April.
    3. Deng, Xiaohui & Barnett, Barry J. & Hoogenboom, Gerrit & Yu, Yingzhuo & Garcia y Garcia, Axel, 2008. "Alternative Crop Insurance Indexes," Journal of Agricultural and Applied Economics, Southern Agricultural Economics Association, vol. 40(1), pages 1-15, April.
    4. Prabakaran, Sellamuthu & Garcia, Isabel C. & Mora, Jose U., 2020. "A temperature stochastic model for option pricing and its impacts on the electricity market," Economic Analysis and Policy, Elsevier, vol. 68(C), pages 58-77.
    5. Andrea Martínez Salgueiro & Maria-Antonia Tarrazon-Rodon, 2021. "Weather derivatives to mitigate meteorological risks in tourism management: An empirical application to celebrations of Comunidad Valenciana (Spain)," Tourism Economics, , vol. 27(4), pages 591-613, June.
    6. Andrea Martínez Salgueiro & Maria-Antonia Tarrazon-Rodon, 2020. "Approaching rainfall-based weather derivatives pricing and operational challenges," Review of Derivatives Research, Springer, vol. 23(2), pages 163-190, July.
    7. Zhang, Li, 2008. "Three essays on agricultural risk and insurance," ISU General Staff Papers 2008010108000016857, Iowa State University, Department of Economics.
    8. Turvey, Calum G. & Chantarat, Sommarat, 2006. "Weather-Linked Bonds," 2006 Agricultural and Rural Finance Markets in Transition, October 2-3, 2006, Washington, DC 133091, Regional Research Committee NC-1014: Agricultural and Rural Finance Markets in Transition.
    9. Ahmet Göncü, 2013. "Comparison of temperature models using heating and cooling degree days futures," Journal of Risk Finance, Emerald Group Publishing, vol. 14(2), pages 159-178, February.
    10. Musshoff, Oliver & Hirschauer, Norbert, 2008. "Hedging von Mengenrisiken in der Landwirtschaft – Wie teuer dürfen „ineffektive“ Wetterderivate sein?," German Journal of Agricultural Economics, Humboldt-Universitaet zu Berlin, Department for Agricultural Economics, vol. 57(05), pages 1-12.
    11. Musshoff, Oliver & Odening, Martin & Xu, Wei, 2005. "Zur Bewertung von Wetterderivaten als innovative Risikomanagementinstrumente in der Landwirtschaft," German Journal of Agricultural Economics, Humboldt-Universitaet zu Berlin, Department for Agricultural Economics, vol. 54(04), pages 1-13.
    12. Mark Manfredo & Timothy Richards, 2009. "Hedging with weather derivatives: a role for options in reducing basis risk," Applied Financial Economics, Taylor & Francis Journals, vol. 19(2), pages 87-97.
    13. Wolfgang Karl Härdle & Brenda López Cabrera, 2012. "The Implied Market Price of Weather Risk," Applied Mathematical Finance, Taylor & Francis Journals, vol. 19(1), pages 59-95, February.
    14. Musshoff, Oliver & Odening, Martin & Xu, Wei, 2005. "Zur Reduzierung niederschlagsbedingter Produktionsrisiken mit Wetterderivaten," Working Paper Series 18822, Humboldt University Berlin, Department of Agricultural Economics.
    15. Heng Xiong & Rogemar Mamon, 2018. "Putting a price tag on temperature," Computational Management Science, Springer, vol. 15(2), pages 259-296, June.
    16. Angelos Prentzas & Thomas Bournaris & Stefanos Nastis & Christina Moulogianni & George Vlontzos, 2024. "Enhancing Sustainability through Weather Derivative Option Contracts: A Risk Management Tool in Greek Agriculture," Sustainability, MDPI, vol. 16(17), pages 1-18, August.
    17. repec:hum:wpaper:sfb649dp2014-006 is not listed on IDEAS
    18. Groll, Andreas & López-Cabrera, Brenda & Meyer-Brandis, Thilo, 2016. "A consistent two-factor model for pricing temperature derivatives," Energy Economics, Elsevier, vol. 55(C), pages 112-126.
    19. Boyle, Colin F.H. & Haas, Jannik & Kern, Jordan D., 2021. "Development of an irradiance-based weather derivative to hedge cloud risk for solar energy systems," Renewable Energy, Elsevier, vol. 164(C), pages 1230-1243.
    20. Barnett, Barry J. & Barrett, Christopher B. & Skees, Jerry R., 2008. "Poverty Traps and Index-Based Risk Transfer Products," World Development, Elsevier, vol. 36(10), pages 1766-1785, October.
    21. Lin, Shanshan & Mullen, Jeffrey D. & Hoogenboom, Gerrit, 2009. "Spatial and Temporal On-Farm Risk Management - Crop Production Scheduling and Index Insurance Strategies," 2009 Annual Meeting, July 26-28, 2009, Milwaukee, Wisconsin 49350, Agricultural and Applied Economics Association.

    More about this item

    Keywords

    Risk and Uncertainty;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ags:aaea05:19255. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: AgEcon Search (email available below). General contact details of provider: https://edirc.repec.org/data/aaeaaea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.