Nothing Special   »   [go: up one dir, main page]

IDEAS home Printed from https://ideas.repec.org/p/cui/wpaper/0060.html
   My bibliography  Save this paper

Testing for time-varying stochastic volatility in Bitcoin returns

Author

Listed:
  • Afees A. Salisu

    (Department for Management of Science and Technology Development, Ton Duc Thang University, Ho Chi Minh City, Vietnam Faculty of Business Administration, Ton Duc Thang University, Ho Chi Minh City, Vietnam Centre for Econometric and Allied Research, University of Ibadan)

  • Idris Adediran

    (Department of Economics, Obafemi Awolowo University, Nigeria.)

Abstract
The study will be the first to offer empirical justification for time-varying stochastic volatility in Bitcoin returns. Specifically, it tests for time variation in both the trend and transitory components of the stochastic volatility using the unobserved components model that accounts for same. Thereafter, it calculates the Bayes factor using the approach of Chan (2018) which involves the Savage-Dickey density ratio in order to avoid the computation of the marginal likelihood. The results overwhelmingly support at least one time-varying stochastic volatility component in Bitcoin returns and the transitory component is favoured in this regard. These results are robust to different data frequencies.

Suggested Citation

  • Afees A. Salisu & Idris Adediran, 2018. "Testing for time-varying stochastic volatility in Bitcoin returns," Working Papers 060, Centre for Econometric and Allied Research, University of Ibadan.
  • Handle: RePEc:cui:wpaper:0060
    as

    Download full text from publisher

    File URL: http://cear.org.ng/index.php?option=com_docman&task=doc_download&gid=103&Itemid=29
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Cheah, Eng-Tuck & Mishra, Tapas & Parhi, Mamata & Zhang, Zhuang, 2018. "Long Memory Interdependency and Inefficiency in Bitcoin Markets," Economics Letters, Elsevier, vol. 167(C), pages 18-25.
    2. Joshua C. C. Chan, 2018. "Specification tests for time-varying parameter models with stochastic volatility," Econometric Reviews, Taylor & Francis Journals, vol. 37(8), pages 807-823, September.
    3. Chan, Joshua C.C. & Grant, Angelia L., 2016. "Modeling energy price dynamics: GARCH versus stochastic volatility," Energy Economics, Elsevier, vol. 54(C), pages 182-189.
    4. Lahmiri, Salim & Bekiros, Stelios & Salvi, Antonio, 2018. "Long-range memory, distributional variation and randomness of bitcoin volatility," Chaos, Solitons & Fractals, Elsevier, vol. 107(C), pages 43-48.
    5. Lahmiri, Salim & Bekiros, Stelios, 2018. "Chaos, randomness and multi-fractality in Bitcoin market," Chaos, Solitons & Fractals, Elsevier, vol. 106(C), pages 28-34.
    6. Katsiampa, Paraskevi, 2017. "Volatility estimation for Bitcoin: A comparison of GARCH models," Economics Letters, Elsevier, vol. 158(C), pages 3-6.
    7. James H. Stock & Mark W. Watson, 2007. "Why Has U.S. Inflation Become Harder to Forecast?," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 39(s1), pages 3-33, February.
    8. Jamal Bouoiyour & Refk Selmi, 2016. "Bitcoin: a beginning of a new phase?," Economics Bulletin, AccessEcon, vol. 36(3), pages 1430-1440.
    9. Dyhrberg, Anne Haubo, 2016. "Hedging capabilities of bitcoin. Is it the virtual gold?," Finance Research Letters, Elsevier, vol. 16(C), pages 139-144.
    10. Baur, Dirk G. & Hong, KiHoon & Lee, Adrian D., 2018. "Bitcoin: Medium of exchange or speculative assets?," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 54(C), pages 177-189.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nikolaos A. Kyriazis, 2019. "A Survey on Efficiency and Profitable Trading Opportunities in Cryptocurrency Markets," JRFM, MDPI, vol. 12(2), pages 1-17, April.
    2. Wei Zhang & Pengfei Wang & Xiao Li & Dehua Shen, 2018. "Some stylized facts of the cryptocurrency market," Applied Economics, Taylor & Francis Journals, vol. 50(55), pages 5950-5965, November.
    3. Corbet, Shaen & Katsiampa, Paraskevi & Lau, Chi Keung Marco, 2020. "Measuring quantile dependence and testing directional predictability between Bitcoin, altcoins and traditional financial assets," International Review of Financial Analysis, Elsevier, vol. 71(C).
    4. Gronwald, Marc, 2019. "Is Bitcoin a Commodity? On price jumps, demand shocks, and certainty of supply," Journal of International Money and Finance, Elsevier, vol. 97(C), pages 86-92.
    5. Aurelio F. Bariviera & Ignasi Merediz‐Solà, 2021. "Where Do We Stand In Cryptocurrencies Economic Research? A Survey Based On Hybrid Analysis," Journal of Economic Surveys, Wiley Blackwell, vol. 35(2), pages 377-407, April.
    6. Jiménez, Inés & Mora-Valencia, Andrés & Perote, Javier, 2022. "Semi-nonparametric risk assessment with cryptocurrencies," Research in International Business and Finance, Elsevier, vol. 59(C).
    7. Panagiotidis, Theodore & Stengos, Thanasis & Vravosinos, Orestis, 2019. "The effects of markets, uncertainty and search intensity on bitcoin returns," International Review of Financial Analysis, Elsevier, vol. 63(C), pages 220-242.
    8. Leandro Maciel, 2021. "Cryptocurrencies value‐at‐risk and expected shortfall: Do regime‐switching volatility models improve forecasting?," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 26(3), pages 4840-4855, July.
    9. Abakah, Emmanuel Joel Aikins & Gil-Alana, Luis Alberiko & Madigu, Godfrey & Romero-Rojo, Fatima, 2020. "Volatility persistence in cryptocurrency markets under structural breaks," International Review of Economics & Finance, Elsevier, vol. 69(C), pages 680-691.
    10. Ángeles Cebrián-Hernández & Enrique Jiménez-Rodríguez, 2021. "Modeling of the Bitcoin Volatility through Key Financial Environment Variables: An Application of Conditional Correlation MGARCH Models," Mathematics, MDPI, vol. 9(3), pages 1-16, January.
    11. Chaim, Pedro & Laurini, Márcio P., 2019. "Nonlinear dependence in cryptocurrency markets," The North American Journal of Economics and Finance, Elsevier, vol. 48(C), pages 32-47.
    12. ORĂȘTEAN Ramona & MĂRGINEAN Silvia Cristina & SAVA Raluca, 2019. "Bitcoin In The Scientific Literature – A Bibliometric Study," Studies in Business and Economics, Lucian Blaga University of Sibiu, Faculty of Economic Sciences, vol. 14(3), pages 160-174, December.
    13. Lennart Ante, 2020. "A place next to Satoshi: foundations of blockchain and cryptocurrency research in business and economics," Scientometrics, Springer;Akadémiai Kiadó, vol. 124(2), pages 1305-1333, August.
    14. Leonardo Ieracitano Vieira & Márcio Poletti Laurini, 2023. "Time-varying higher moments in Bitcoin," Digital Finance, Springer, vol. 5(2), pages 231-260, June.
    15. Antonakakis, Nikolaos & Chatziantoniou, Ioannis & Gabauer, David, 2019. "Cryptocurrency market contagion: Market uncertainty, market complexity, and dynamic portfolios," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 61(C), pages 37-51.
    16. Lahmiri, Salim & Bekiros, Stelios, 2019. "Decomposing the persistence structure of Islamic and green crypto-currencies with nonlinear stepwise filtering," Chaos, Solitons & Fractals, Elsevier, vol. 127(C), pages 334-341.
    17. Ahmed H. Elsayed & Giray Gozgor & Chi Keung Marco Lau, 2022. "Causality and dynamic spillovers among cryptocurrencies and currency markets," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 27(2), pages 2026-2040, April.
    18. Narayan, Paresh Kumar & Narayan, Seema & Eki Rahman, R. & Setiawan, Iwan, 2019. "Bitcoin price growth and Indonesia's monetary system," Emerging Markets Review, Elsevier, vol. 38(C), pages 364-376.
    19. Corbet, Shaen & Lucey, Brian & Urquhart, Andrew & Yarovaya, Larisa, 2019. "Cryptocurrencies as a financial asset: A systematic analysis," International Review of Financial Analysis, Elsevier, vol. 62(C), pages 182-199.
    20. Corbet, Shaen & Katsiampa, Paraskevi, 2020. "Asymmetric mean reversion of Bitcoin price returns," International Review of Financial Analysis, Elsevier, vol. 71(C).

    More about this item

    Keywords

    Bitcoin returns; Time-varying stochastic volatility; Bayes factor;
    All these keywords.

    JEL classification:

    • C11 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Bayesian Analysis: General
    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
    • G17 - Financial Economics - - General Financial Markets - - - Financial Forecasting and Simulation

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cui:wpaper:0060. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Adeoye Omosebi (email available below). General contact details of provider: https://edirc.repec.org/data/ceuibng.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.