(This abstract was borrowed from another version of this item.)"> (This abstract was borrowed from another version of this item.)">
Nothing Special   »   [go: up one dir, main page]

IDEAS home Printed from https://ideas.repec.org/p/cla/levrem/122247000000001390.html
   My bibliography  Save this paper

Probabilistic Sophistication and Stochastic Monotonicity in the Savage Framework

Author

Listed:
  • Simon Grant
  • Hatice Ozsoy
  • Ben Polak
Abstract
Machina and Schmeidler [Machina, M., Schmeidler, D., 1992. A more robust definition of subjective probability. Econometrica 60, 745-780] show that probabilistic sophistication can be obtained in a Savage setting without imposing expected utility by dropping Savage's axiom P2 (sure-thing principle) and strengthening his axiom P4 (weak comparative probability). Their stronger axiom, however, embodies a degree of separability analogous to P2. In this note, we obtain probabilistic sophistication using Savage's original axiom P4 and a weaker analog of Savage's P2.
(This abstract was borrowed from another version of this item.)

Suggested Citation

  • Simon Grant & Hatice Ozsoy & Ben Polak, 2007. "Probabilistic Sophistication and Stochastic Monotonicity in the Savage Framework," Levine's Bibliography 122247000000001390, UCLA Department of Economics.
  • Handle: RePEc:cla:levrem:122247000000001390
    as

    Download full text from publisher

    File URL: http://cowles.econ.yale.edu/P/cd/d16a/d1621.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Machina Mark J. & Schmeidler David, 1995. "Bayes without Bernoulli: Simple Conditions for Probabilistically Sophisticated Choice," Journal of Economic Theory, Elsevier, vol. 67(1), pages 106-128, October.
    2. Sarin, Rakesh & Wakker, Peter P., 2000. "Cumulative dominance and probabilistic sophistication," Mathematical Social Sciences, Elsevier, vol. 40(2), pages 191-196, September.
    3. Machina, Mark J & Schmeidler, David, 1992. "A More Robust Definition of Subjective Probability," Econometrica, Econometric Society, vol. 60(4), pages 745-780, July.
    4. Grant, Simon & Polak, Ben, 2006. "Bayesian beliefs with stochastic monotonicity: An extension of Machina and Schmeidler," Journal of Economic Theory, Elsevier, vol. 130(1), pages 264-282, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fleurbaey, Marc & Zuber, Stéphane, 2017. "Fair management of social risk," Journal of Economic Theory, Elsevier, vol. 169(C), pages 666-706.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cerreia-Vioglio, Simone & Maccheroni, Fabio & Marinacci, Massimo & Montrucchio, Luigi, 2012. "Probabilistic sophistication, second order stochastic dominance and uncertainty aversion," Journal of Mathematical Economics, Elsevier, vol. 48(5), pages 271-283.
    2. Qu, Xiangyu, 2017. "Subjective mean–variance preferences without expected utility," Mathematical Social Sciences, Elsevier, vol. 87(C), pages 31-39.
    3. Edi Karni & Marie-Louise Vierø, 2015. "Probabilistic sophistication and reverse Bayesianism," Journal of Risk and Uncertainty, Springer, vol. 50(3), pages 189-208, June.
    4. Adam Dominiak & Jean-Philippe Lefort, 2021. "Ambiguity and Probabilistic Information," Management Science, INFORMS, vol. 67(7), pages 4310-4326, July.
    5. Fleurbaey, Marc & Zuber, Stéphane, 2017. "Fair management of social risk," Journal of Economic Theory, Elsevier, vol. 169(C), pages 666-706.
    6. Tsoukias, Alexis, 2008. "From decision theory to decision aiding methodology," European Journal of Operational Research, Elsevier, vol. 187(1), pages 138-161, May.
    7. Klaus Nehring, 2006. "Decision-Making in the Context of Imprecise Probabilistic Beliefs," Economics Working Papers 0034, Institute for Advanced Study, School of Social Science.
    8. Dominiak, Adam & Tserenjigmid, Gerelt, 2022. "Ambiguity under growing awareness," Journal of Economic Theory, Elsevier, vol. 199(C).
    9. Ilke Aydogan & Loic Berger & Valentina Bosetti & Ning Liu, 2018. "Three layers of uncertainty: an experiment," Working Papers 623, IGIER (Innocenzo Gasparini Institute for Economic Research), Bocconi University.
    10. Karni, Edi, 2020. "Probabilistic sophistication without completeness," Journal of Mathematical Economics, Elsevier, vol. 89(C), pages 8-13.
    11. Karni, Edi & Vierø, Marie-Louise, 2023. "Comparative incompleteness: Measurement, behavioral manifestations and elicitation," Journal of Economic Behavior & Organization, Elsevier, vol. 205(C), pages 423-442.
    12. Xiangyu Qu, 2015. "A belief-based definition of ambiguity aversion," Theory and Decision, Springer, vol. 79(1), pages 15-30, July.
    13. Evren, Özgür, 2019. "Recursive non-expected utility: Connecting ambiguity attitudes to risk preferences and the level of ambiguity," Games and Economic Behavior, Elsevier, vol. 114(C), pages 285-307.
    14. Becker, Christoph K. & Melkonyan, Tigran & Proto, Eugenio & Sofianos, Andis & Trautmann, Stefan T., 2020. "Reverse Bayesianism: Revising Beliefs in Light of Unforeseen Events," IZA Discussion Papers 13821, Institute of Labor Economics (IZA).
    15. Mark Machina, 2004. "Almost-objective uncertainty," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 24(1), pages 1-54, July.
    16. Tomasz, Strzalecki, 2011. "Probabilistic sophistication and variational preferences," Journal of Economic Theory, Elsevier, vol. 146(5), pages 2117-2125, September.
    17. Karni, Edi, 2020. "On the indeterminacy of the representation of beliefs by probabilities," Economics Letters, Elsevier, vol. 196(C).
    18. Yoram Halevy & Emre Ozdenoren, 2022. "Uncertainty and compound lotteries: calibration," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 74(2), pages 373-395, September.
    19. Grant, Simon & Karni, Edi, 2004. "A theory of quantifiable beliefs," Journal of Mathematical Economics, Elsevier, vol. 40(5), pages 515-546, August.
    20. Harrison, Glenn W. & Martínez-Correa, Jimmy & Swarthout, J. Todd, 2013. "Inducing risk neutral preferences with binary lotteries: A reconsideration," Journal of Economic Behavior & Organization, Elsevier, vol. 94(C), pages 145-159.

    More about this item

    JEL classification:

    • D81 - Microeconomics - - Information, Knowledge, and Uncertainty - - - Criteria for Decision-Making under Risk and Uncertainty

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cla:levrem:122247000000001390. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: David K. Levine (email available below). General contact details of provider: http://www.dklevine.com/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.