Nothing Special   »   [go: up one dir, main page]

IDEAS home Printed from https://ideas.repec.org/p/cir/cirwor/2003s-05.html
   My bibliography  Save this paper

Backtesting Value-at-Risk: A Duration-Based Approach

Author

Listed:
  • Peter Christoffersen
  • Denis Pelletier
Abstract
Financial risk model evaluation or backtesting is a key part of the internal model's approach to market risk management as laid out by the Basle Commitee on Banking Supervision (1996). However, existing backtesting methods such as those developed in Christoffersen (1998), have relatively small power in realistic small sample settings. Methods suggested in Berkowitz (2001) fare better, but rely on information such as the shape of the left tail of the portfolio return distribution, which is often not available. By far the most common risk measure is Value-at-Risk (VaR), which is defined as a conditional quantile of the return distribution, and it says nothing about the shape of the tail to the left of the quantile. Our contribution is the exploration of a new tool for backtesting based on the duration of days between the violations of the VaR. The chief insight is that if the VaR model is correctly specified for coverage rate, p, then the conditional expected duration between violations should be a constant 1/p days. We suggest various ways of testing this null hypothesis and we conduct a Monte Carlo analysis which compares the new tests to those currently available. Our results show that in realistic situations, the duration based tests have better power properties than the previously suggested tests. The size of the tests is easily controlled using the Monte Carlo technique of Dufour (2000). L'évaluation des modèles de risque financier, ou test inversé, est une partie importante de l'approche avec modèle interne pour la gestion de risque tel qu'établie par le Comité de Basle pour la supervision bancaire (1996). Toutefois, les procédures existantes de tests inversés telles que celles développées dans Christoffersen (1998), ont une puissance relativement faible pour des tailles d'échantillon réalistes. Les méthodes suggérées dans Berkowitz (2001) performe mieux mais sont basées sur de l'information, telle que la forme de la queue gauche de la distribution des rendements du portefeuille, qui n'est pas toujours disponible. La mesure de risque de loin la plus courante est la Valeur-à-Risque (VaR), qui est définie comme un quantile de la distribution conditionnelle du rendement, et elle ne dit rien à-propos de la forme de la distribution à gauche du quantile. Notre contribution est l'exploration d'un nouvel outil pour les tests inversés basé sur la durée en jours entre les violations de la VaR. L'intuition est que si le modèle de VaR est correctement spécifié pour un taux de couverture p, alors la durée espérée conditionnelle entre les violations devrait être une constante 1/p jours. Nous proposons diverses façons de tester cette hypothèse nulle et nous effectuons une analyse Monte Carlo où l'on compare ces nouveaux tests à ceux présentement disponibles. Nos résultats montrent que pour des situations réalistes, les tests basés sur les durées ont de meilleures propriétés en termes de puissance que ceux précédemment proposés. La taille des tests est facilement contrôlée en utilisant la technique Monte Carlo de Dufour (2000).

Suggested Citation

  • Peter Christoffersen & Denis Pelletier, 2003. "Backtesting Value-at-Risk: A Duration-Based Approach," CIRANO Working Papers 2003s-05, CIRANO.
  • Handle: RePEc:cir:cirwor:2003s-05
    as

    Download full text from publisher

    File URL: https://cirano.qc.ca/files/publications/2003s-05.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Berkowitz, Jeremy, 2001. "Testing Density Forecasts, with Applications to Risk Management," Journal of Business & Economic Statistics, American Statistical Association, vol. 19(4), pages 465-474, October.
    2. James D. Hamilton & Oscar Jorda, 2002. "A Model of the Federal Funds Rate Target," Journal of Political Economy, University of Chicago Press, vol. 110(5), pages 1135-1167, October.
    3. Dufour, Jean-Marie, 2006. "Monte Carlo tests with nuisance parameters: A general approach to finite-sample inference and nonstandard asymptotics," Journal of Econometrics, Elsevier, vol. 133(2), pages 443-477, August.
    4. Christoffersen, Peter F, 1998. "Evaluating Interval Forecasts," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 39(4), pages 841-862, November.
    5. Domenico Cuoco & Hua He & Sergei Issaenko, 2001. "Optimal Dynamic rading Strategies with Risk Limits," FAME Research Paper Series rp60, International Center for Financial Asset Management and Engineering.
    6. Francis X. Diebold & Todd A. Gunther & Anthony S. Tay, "undated". "Evaluating Density Forecasts," CARESS Working Papres 97-18, University of Pennsylvania Center for Analytic Research and Economics in the Social Sciences.
    7. Robert F. Engle & Jeffrey R. Russell, 1998. "Autoregressive Conditional Duration: A New Model for Irregularly Spaced Transaction Data," Econometrica, Econometric Society, vol. 66(5), pages 1127-1162, September.
    8. Basak, Suleyman & Shapiro, Alexander, 2001. "Value-at-Risk-Based Risk Management: Optimal Policies and Asset Prices," The Review of Financial Studies, Society for Financial Studies, vol. 14(2), pages 371-405.
    9. M.J.B. Hall, 1996. "The amendment to the capital accord to incorporate market risk," BNL Quarterly Review, Banca Nazionale del Lavoro, vol. 49(197), pages 271-277.
    10. Engle, Robert F. & White (the late), Halbert (ed.), 1999. "Cointegration, Causality, and Forecasting: Festschrift in Honour of Clive W. J. Granger," OUP Catalogue, Oxford University Press, number 9780198296836.
    11. Matthew Pritsker, 1997. "Evaluating Value at Risk Methodologies: Accuracy versus Computational Time," Journal of Financial Services Research, Springer;Western Finance Association, vol. 12(2), pages 201-242, October.
    12. Gourieroux,Christian, 2000. "Econometrics of Qualitative Dependent Variables," Cambridge Books, Cambridge University Press, number 9780521589857, October.
    13. Jeremy Berkowitz & James O'Brien, 2002. "How Accurate Are Value‐at‐Risk Models at Commercial Banks?," Journal of Finance, American Finance Association, vol. 57(3), pages 1093-1111, June.
    14. Kiefer, Nicholas M, 1988. "Economic Duration Data and Hazard Functions," Journal of Economic Literature, American Economic Association, vol. 26(2), pages 646-679, June.
    15. Paul H. Kupiec, 1995. "Techniques for verifying the accuracy of risk measurement models," Finance and Economics Discussion Series 95-24, Board of Governors of the Federal Reserve System (U.S.).
    16. Diebold, Francis X & Gunther, Todd A & Tay, Anthony S, 1998. "Evaluating Density Forecasts with Applications to Financial Risk Management," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 39(4), pages 863-883, November.
    17. Dale J. Poirier, 1995. "Intermediate Statistics and Econometrics: A Comparative Approach," MIT Press Books, The MIT Press, edition 1, volume 1, number 0262161494, April.
    18. Christoffersen, Peter & Hahn, Jinyong & Inoue, Atsushi, 2001. "Testing and comparing Value-at-Risk measures," Journal of Empirical Finance, Elsevier, vol. 8(3), pages 325-342, July.
    19. Darryll Hendricks, 1996. "Evaluation of value-at-risk models using historical data," Economic Policy Review, Federal Reserve Bank of New York, vol. 2(Apr), pages 39-69.
    20. Hansen, Bruce E, 1994. "Autoregressive Conditional Density Estimation," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 35(3), pages 705-730, August.
    21. Philippe Artzner & Freddy Delbaen & Jean‐Marc Eber & David Heath, 1999. "Coherent Measures of Risk," Mathematical Finance, Wiley Blackwell, vol. 9(3), pages 203-228, July.
    22. Matthew Pritsker, 2001. "The hidden dangers of historical simulation," Finance and Economics Discussion Series 2001-27, Board of Governors of the Federal Reserve System (U.S.).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pritsker, Matthew, 2006. "The hidden dangers of historical simulation," Journal of Banking & Finance, Elsevier, vol. 30(2), pages 561-582, February.
    2. Nieto, Maria Rosa & Ruiz, Esther, 2016. "Frontiers in VaR forecasting and backtesting," International Journal of Forecasting, Elsevier, vol. 32(2), pages 475-501.
    3. Gaglianone, Wagner Piazza & Lima, Luiz Renato & Linton, Oliver & Smith, Daniel R., 2011. "Evaluating Value-at-Risk Models via Quantile Regression," Journal of Business & Economic Statistics, American Statistical Association, vol. 29(1), pages 150-160.
    4. Jeremy Berkowitz & Peter Christoffersen & Denis Pelletier, 2011. "Evaluating Value-at-Risk Models with Desk-Level Data," Management Science, INFORMS, vol. 57(12), pages 2213-2227, December.
    5. Jeremy Berkowitz & James M. O'Brien, 2001. "How accurate are Value-at-Risk models at commercial banks?," Finance and Economics Discussion Series 2001-31, Board of Governors of the Federal Reserve System (U.S.).
    6. Wong, Woon K., 2010. "Backtesting value-at-risk based on tail losses," Journal of Empirical Finance, Elsevier, vol. 17(3), pages 526-538, June.
    7. Sean D. Campbell, 2005. "A review of backtesting and backtesting procedures," Finance and Economics Discussion Series 2005-21, Board of Governors of the Federal Reserve System (U.S.).
    8. Leccadito, Arturo & Boffelli, Simona & Urga, Giovanni, 2014. "Evaluating the accuracy of value-at-risk forecasts: New multilevel tests," International Journal of Forecasting, Elsevier, vol. 30(2), pages 206-216.
    9. Andersen, Torben G. & Bollerslev, Tim & Christoffersen, Peter F. & Diebold, Francis X., 2006. "Volatility and Correlation Forecasting," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 1, chapter 15, pages 777-878, Elsevier.
    10. Jose A. Lopez, 1999. "Methods for evaluating value-at-risk estimates," Economic Review, Federal Reserve Bank of San Francisco, pages 3-17.
    11. Colletaz, Gilbert & Hurlin, Christophe & Pérignon, Christophe, 2013. "The Risk Map: A new tool for validating risk models," Journal of Banking & Finance, Elsevier, vol. 37(10), pages 3843-3854.
    12. Chen, Qian & Gerlach, Richard H., 2013. "The two-sided Weibull distribution and forecasting financial tail risk," International Journal of Forecasting, Elsevier, vol. 29(4), pages 527-540.
    13. Frésard, Laurent & Pérignon, Christophe & Wilhelmsson, Anders, 2011. "The pernicious effects of contaminated data in risk management," Journal of Banking & Finance, Elsevier, vol. 35(10), pages 2569-2583, October.
    14. Christophe HURLIN & Sessi TOKPAVI, 2007. "Une évaluation des procédures de Backtesting," LEO Working Papers / DR LEO 1716, Orleans Economics Laboratory / Laboratoire d'Economie d'Orleans (LEO), University of Orleans.
    15. Pérignon, Christophe & Deng, Zi Yin & Wang, Zhi Jun, 2008. "Do banks overstate their Value-at-Risk?," Journal of Banking & Finance, Elsevier, vol. 32(5), pages 783-794, May.
    16. Farkas, Walter & Fringuellotti, Fulvia & Tunaru, Radu, 2020. "A cost-benefit analysis of capital requirements adjusted for model risk," Journal of Corporate Finance, Elsevier, vol. 65(C).
    17. Benjamin Mögel & Benjamin R. Auer, 2018. "How accurate are modern Value-at-Risk estimators derived from extreme value theory?," Review of Quantitative Finance and Accounting, Springer, vol. 50(4), pages 979-1030, May.
    18. Escanciano, Juan Carlos & Pei, Pei, 2012. "Pitfalls in backtesting Historical Simulation VaR models," Journal of Banking & Finance, Elsevier, vol. 36(8), pages 2233-2244.
    19. Zaichao Du & Juan Carlos Escanciano, 2017. "Backtesting Expected Shortfall: Accounting for Tail Risk," Management Science, INFORMS, vol. 63(4), pages 940-958, April.
    20. Gaglianone, Wagner Piazza & Marins, Jaqueline Terra Moura, 2017. "Evaluation of exchange rate point and density forecasts: An application to Brazil," International Journal of Forecasting, Elsevier, vol. 33(3), pages 707-728.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cir:cirwor:2003s-05. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Webmaster (email available below). General contact details of provider: https://edirc.repec.org/data/ciranca.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.