Nothing Special   »   [go: up one dir, main page]

IDEAS home Printed from https://ideas.repec.org/a/taf/jnlasa/v109y2014i507p1071-1083.html
   My bibliography  Save this article

Efficient R-Estimation of Principal and Common Principal Components

Author

Listed:
  • Marc Hallin
  • Davy Paindaveine
  • Thomas Verdebout
Abstract
We propose rank-based estimators of principal components, both in the one-sample and, under the assumption of common principal components , in the m -sample cases. Those estimators are obtained via a rank-based version of Le Cam's one-step method, combined with an estimation of cross-information quantities . Under arbitrary elliptical distributions with, in the m -sample case, possibly heterogeneous radial densities, those R-estimators remain root- n consistent and asymptotically normal, while achieving asymptotic efficiency under correctly specified radial densities. Contrary to their traditional counterparts computed from empirical covariances, they do not require any moment conditions. When based on Gaussian score functions, in the one-sample case, they uniformly dominate their classical competitors in the Pitman sense. Their AREs with respect to other robust procedures are quite high-up to 30, in the Gaussian case, with respect to minimum covariance determinant estimators. Their finite-sample performances are investigated via a Monte Carlo study.

Suggested Citation

  • Marc Hallin & Davy Paindaveine & Thomas Verdebout, 2014. "Efficient R-Estimation of Principal and Common Principal Components," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 109(507), pages 1071-1083, September.
  • Handle: RePEc:taf:jnlasa:v:109:y:2014:i:507:p:1071-1083
    DOI: 10.1080/01621459.2014.880057
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/01621459.2014.880057
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/01621459.2014.880057?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Thomas P. Hettmansperger, 2002. "A practical affine equivariant multivariate median," Biometrika, Biometrika Trust, vol. 89(4), pages 851-860, December.
    2. Boente, Graciela & Rodriguez, Daniela & Sued, Mariela, 2010. "Inference under functional proportional and common principal component models," Journal of Multivariate Analysis, Elsevier, vol. 101(2), pages 464-475, February.
    3. Marc Hallin & Davy Paindaveine & Thomas Verdebout, 2010. "Testing for Common Principal Components under Heterokurticity," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 22(7), pages 879-895.
    4. Marc Hallin & Davy Paindaveine & Thomas Verdebout, 2009. "Optimal rank-based testing for principal component," Working Papers ECARES 2009_013, ULB -- Universite Libre de Bruxelles.
    5. Cator, Eric A. & Lopuhaä, Hendrik P., 2010. "Asymptotic expansion of the minimum covariance determinant estimators," Journal of Multivariate Analysis, Elsevier, vol. 101(10), pages 2372-2388, November.
    6. Boente, Graciela & Pires, Ana M. & Rodrigues, Isabel M., 2006. "General projection-pursuit estimators for the common principal components model: influence functions and Monte Carlo study," Journal of Multivariate Analysis, Elsevier, vol. 97(1), pages 124-147, January.
    7. Paindaveine, Davy, 2006. "A Chernoff-Savage result for shape:On the non-admissibility of pseudo-Gaussian methods," Journal of Multivariate Analysis, Elsevier, vol. 97(10), pages 2206-2220, November.
    8. Paindaveine, Davy, 2008. "A canonical definition of shape," Statistics & Probability Letters, Elsevier, vol. 78(14), pages 2240-2247, October.
    9. Marc Hallin & Davy Paindaveine & Thomas Verdebout, 2011. "Optimal Rank-Based Tests for Common Principal Components," Working Papers ECARES ECARES 2011-032, ULB -- Universite Libre de Bruxelles.
    10. Croux, Christophe & Ruiz-Gazen, Anne, 2005. "High breakdown estimators for principal components: the projection-pursuit approach revisited," Journal of Multivariate Analysis, Elsevier, vol. 95(1), pages 206-226, July.
    11. Graciela Boente, 2002. "Influence functions and outlier detection under the common principal components model: A robust approach," Biometrika, Biometrika Trust, vol. 89(4), pages 861-875, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Peter N. Posch & Daniel Ullmann & Dominik Wied, 2019. "Detecting structural changes in large portfolios," Empirical Economics, Springer, vol. 56(4), pages 1341-1357, April.
    2. Davy Paindaveine & Julien Remy & Thomas Verdebout, 2017. "Testing for Principal Component Directions under Weak Identifiability," Working Papers ECARES ECARES 2017-37, ULB -- Universite Libre de Bruxelles.
    3. Hallin, Marc & van den Akker, Ramon & Werker, Bas J.M., 2016. "Semiparametric error-correction models for cointegration with trends: Pseudo-Gaussian and optimal rank-based tests of the cointegration rank," Journal of Econometrics, Elsevier, vol. 190(1), pages 46-61.
    4. Christophe Ley & Yvik Swan & Thomas Verdebout, 2017. "Efficient ANOVA for directional data," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 69(1), pages 39-62, February.
    5. Bernard, Gaspard & Verdebout, Thomas, 2024. "On some multivariate sign tests for scatter matrix eigenvalues," Econometrics and Statistics, Elsevier, vol. 29(C), pages 252-260.
    6. Bernard, Gaspard & Verdebout, Thomas, 2024. "On testing the equality of latent roots of scatter matrices under ellipticity," Journal of Multivariate Analysis, Elsevier, vol. 199(C).
    7. Paindaveine, Davy & Rasoafaraniaina, Rondrotiana Joséa & Verdebout, Thomas, 2017. "Preliminary test estimation for multi-sample principal components," Econometrics and Statistics, Elsevier, vol. 2(C), pages 106-116.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Marc Hallin & Davy Paindaveine & Thomas Verdebout, 2011. "Optimal Rank-Based Tests for Common Principal Components," Working Papers ECARES ECARES 2011-032, ULB -- Universite Libre de Bruxelles.
    2. Paindaveine, Davy & Rasoafaraniaina, Rondrotiana Joséa & Verdebout, Thomas, 2017. "Preliminary test estimation for multi-sample principal components," Econometrics and Statistics, Elsevier, vol. 2(C), pages 106-116.
    3. Bernard, Gaspard & Verdebout, Thomas, 2024. "On testing the equality of latent roots of scatter matrices under ellipticity," Journal of Multivariate Analysis, Elsevier, vol. 199(C).
    4. Sladana Babic & Laetitia Gelbgras & Marc Hallin & Christophe Ley, 2019. "Optimal tests for elliptical symmetry: specified and unspecified location," Working Papers ECARES 2019-26, ULB -- Universite Libre de Bruxelles.
    5. Graciela Boente & Frank Critchley & Liliana Orellana, 2007. "Influence functions of two families of robust estimators under proportional scatter matrices," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 15(3), pages 295-327, February.
    6. Boente, Graciela & Molina, Julieta & Sued, Mariela, 2010. "On the asymptotic behavior of general projection-pursuit estimators under the common principal components model," Statistics & Probability Letters, Elsevier, vol. 80(3-4), pages 228-235, February.
    7. Luca Bagnato & Antonio Punzo, 2021. "Unconstrained representation of orthogonal matrices with application to common principal components," Computational Statistics, Springer, vol. 36(2), pages 1177-1195, June.
    8. Davy Paindaveine & Julien Remy & Thomas Verdebout, 2019. "Sign Tests for Weak Principal Directions," Working Papers ECARES 2019-01, ULB -- Universite Libre de Bruxelles.
    9. Paindaveine, Davy & Van Bever, Germain, 2014. "Inference on the shape of elliptical distributions based on the MCD," Journal of Multivariate Analysis, Elsevier, vol. 129(C), pages 125-144.
    10. Davy Paindaveine & Germain Van Bever, 2013. "Inference on the Shape of Elliptical Distribution Based on the MCD," Working Papers ECARES ECARES 2013-27, ULB -- Universite Libre de Bruxelles.
    11. Bali, Juan Lucas & Boente, Graciela, 2017. "Robust estimators under a functional common principal components model," Computational Statistics & Data Analysis, Elsevier, vol. 113(C), pages 424-440.
    12. Bali, Juan Lucas & Boente, Graciela, 2015. "Influence function of projection-pursuit principal components for functional data," Journal of Multivariate Analysis, Elsevier, vol. 133(C), pages 173-199.
    13. Bianco, Ana & Boente, Graciela & Pires, Ana M. & Rodrigues, Isabel M., 2008. "Robust discrimination under a hierarchy on the scatter matrices," Journal of Multivariate Analysis, Elsevier, vol. 99(6), pages 1332-1357, July.
    14. Frahm, Gabriel & Jaekel, Uwe, 2010. "A generalization of Tyler's M-estimators to the case of incomplete data," Computational Statistics & Data Analysis, Elsevier, vol. 54(2), pages 374-393, February.
    15. Joni Virta & Niko Lietzén & Henri Nyberg, 2024. "Robust signal dimension estimation via SURE," Statistical Papers, Springer, vol. 65(5), pages 3007-3038, July.
    16. C. Croux & C. Dehon & A. Yadine, 2010. "The k-step spatial sign covariance matrix," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 4(2), pages 137-150, September.
    17. Hallin, M. & van den Akker, R. & Werker, B.J.M., 2012. "Rank-based Tests of the Cointegrating Rank in Semiparametric Error Correction Models," Other publications TiSEM bc68a2f2-3ca3-443c-b3ac-f, Tilburg University, School of Economics and Management.
    18. Davy Paindaveine & Germain Van Bever, 2017. "Tyler Shape Depth," Working Papers ECARES ECARES 2017-29, ULB -- Universite Libre de Bruxelles.
    19. Davy Paindaveine & Thomas Verdebout, 2011. "Rank Tests for Elliptical Graphical Modeling," Working Papers ECARES ECARES 2011-039, ULB -- Universite Libre de Bruxelles.
    20. Boente, Graciela & Pires, Ana M. & Rodrigues, Isabel M., 2010. "Detecting influential observations in principal components and common principal components," Computational Statistics & Data Analysis, Elsevier, vol. 54(12), pages 2967-2975, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:jnlasa:v:109:y:2014:i:507:p:1071-1083. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/UASA20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.