Nothing Special   »   [go: up one dir, main page]

IDEAS home Printed from https://ideas.repec.org/a/hin/jnddns/140984.html
   My bibliography  Save this article

Modeling and Simulation of Polarization in Internet Group Opinions Based on Cellular Automata

Author

Listed:
  • Yaofeng Zhang
  • Renbin Xiao
Abstract
Hot events on Internet always attract many people who usually form one or several opinion camps through discussion. For the problem of polarization in Internet group opinions, we propose a new model based on Cellular Automata by considering neighbors, opinion leaders, and external influences. Simulation results show the following: (1) It is easy to form the polarization for both continuous opinions and discrete opinions when we only consider neighbors influence, and continuous opinions are more effective in speeding the polarization of group. (2) Coevolution mechanism takes more time to make the system stable, and the global coupling mechanism leads the system to consensus. (3) Opinion leaders play an important role in the development of consensus in Internet group opinions. However, both taking the opinion leaders as zealots and taking some randomly selected individuals as zealots are not conductive to the consensus. (4) Double opinion leaders with consistent opinions will accelerate the formation of group consensus, but the opposite opinions will lead to group polarization. (5) Only small external influences can change the evolutionary direction of Internet group opinions.

Suggested Citation

  • Yaofeng Zhang & Renbin Xiao, 2015. "Modeling and Simulation of Polarization in Internet Group Opinions Based on Cellular Automata," Discrete Dynamics in Nature and Society, Hindawi, vol. 2015, pages 1-15, August.
  • Handle: RePEc:hin:jnddns:140984
    DOI: 10.1155/2015/140984
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/DDNS/2015/140984.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/DDNS/2015/140984.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2015/140984?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. C. J. Tessone & R. Toral, 2004. "Neighborhood models of minority opinion spreading," Computing in Economics and Finance 2004 206, Society for Computational Economics.
    2. Loet Leydesdorff, 2001. "Technology and Culture: the Dissemination and the Potential 'Lock-In' of New Technologies," Journal of Artificial Societies and Social Simulation, Journal of Artificial Societies and Social Simulation, vol. 4(3), pages 1-5.
    3. Juan Carlos González-Avella & Mario G. Cosenza & Konstantin Klemm & Víctor M. Eguíluz & Maxi San Miguel, 2007. "Information Feedback and Mass Media Effects in Cultural Dynamics," Journal of Artificial Societies and Social Simulation, Journal of Artificial Societies and Social Simulation, vol. 10(3), pages 1-9.
    4. Ravi Bhavnani, 2003. "Adaptive Agents, Political Institutions and Civic Traditions in Modern Italy," Journal of Artificial Societies and Social Simulation, Journal of Artificial Societies and Social Simulation, vol. 6(4), pages 1-1.
    5. Klemm, Konstantin & Eguiluz, Victor M. & Toral, Raul & Miguel, Maxi San, 2005. "Globalization, polarization and cultural drift," Journal of Economic Dynamics and Control, Elsevier, vol. 29(1-2), pages 321-334, January.
    6. Alessandro Pluchino & Vito Latora & Andrea Rapisarda, 2005. "Changing Opinions In A Changing World: A New Perspective In Sociophysics," International Journal of Modern Physics C (IJMPC), World Scientific Publishing Co. Pte. Ltd., vol. 16(04), pages 515-531.
    7. Rainer Hegselmann & Ulrich Krause, 2002. "Opinion Dynamics and Bounded Confidence Models, Analysis and Simulation," Journal of Artificial Societies and Social Simulation, Journal of Artificial Societies and Social Simulation, vol. 5(3), pages 1-2.
    8. Hołyst, Janusz A. & Kacperski, Krzysztof & Schweitzer, Frank, 2000. "Phase transitions in social impact models of opinion formation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 285(1), pages 199-210.
    9. Dietrich Stauffer & Adriano Sousa & Christian Schulze, 2004. "Discretized Opinion Dynamics of the Deffaunt Model on Scale-Free Networks," Journal of Artificial Societies and Social Simulation, Journal of Artificial Societies and Social Simulation, vol. 7(3), pages 1-7.
    10. Peter V. Marsden & Noah E. Friedkin, 1993. "Network Studies of Social Influence," Sociological Methods & Research, , vol. 22(1), pages 127-151, August.
    11. Chau, H.F. & Wong, C.Y. & Chow, F.K. & Fung, Chi-Hang Fred, 2014. "Social judgment theory based model on opinion formation, polarization and evolution," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 415(C), pages 133-140.
    12. Katarzyna Sznajd-Weron & Józef Sznajd, 2000. "Opinion Evolution In Closed Community," International Journal of Modern Physics C (IJMPC), World Scientific Publishing Co. Pte. Ltd., vol. 11(06), pages 1157-1165.
    13. Wang, Xiao Fan & Chen, Guanrong, 2002. "Pinning control of scale-free dynamical networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 310(3), pages 521-531.
    14. Guillaume Deffuant & David Neau & Frederic Amblard & Gérard Weisbuch, 2000. "Mixing beliefs among interacting agents," Advances in Complex Systems (ACS), World Scientific Publishing Co. Pte. Ltd., vol. 3(01n04), pages 87-98.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pawel Sobkowicz, 2009. "Modelling Opinion Formation with Physics Tools: Call for Closer Link with Reality," Journal of Artificial Societies and Social Simulation, Journal of Artificial Societies and Social Simulation, vol. 12(1), pages 1-11.
    2. Quanbo Zha & Gang Kou & Hengjie Zhang & Haiming Liang & Xia Chen & Cong-Cong Li & Yucheng Dong, 2020. "Opinion dynamics in finance and business: a literature review and research opportunities," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 6(1), pages 1-22, December.
    3. Luis R. Izquierdo & Segismundo S. Izquierdo & José Manuel Galán & José Ignacio Santos, 2009. "Techniques to Understand Computer Simulations: Markov Chain Analysis," Journal of Artificial Societies and Social Simulation, Journal of Artificial Societies and Social Simulation, vol. 12(1), pages 1-6.
    4. Francisco J. León-Medina & Jordi Tena-Sánchez & Francisco J. Miguel, 2020. "Fakers becoming believers: how opinion dynamics are shaped by preference falsification, impression management and coherence heuristics," Quality & Quantity: International Journal of Methodology, Springer, vol. 54(2), pages 385-412, April.
    5. Hernández, Alexis R. & Gracia-Lázaro, Carlos & Brigatti, Edgardo & Moreno, Yamir, 2018. "Robustness of cultural communities in an open-ended Axelrod’s model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 509(C), pages 492-500.
    6. Kazuya Yamamoto, 2015. "Mobilization, Flexibility of Identity, and Ethnic Cleavage," Journal of Artificial Societies and Social Simulation, Journal of Artificial Societies and Social Simulation, vol. 18(2), pages 1-8.
    7. Shang, Lihui & Zhao, Mingming & Ai, Jun & Su, Zhan, 2021. "Opinion evolution in the Sznajd model on interdependent chains," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 565(C).
    8. Lu, Xi & Mo, Hongming & Deng, Yong, 2015. "An evidential opinion dynamics model based on heterogeneous social influential power," Chaos, Solitons & Fractals, Elsevier, vol. 73(C), pages 98-107.
    9. María Cecilia Gimenez & Luis Reinaudi & Ana Pamela Paz-García & Paulo Marcelo Centres & Antonio José Ramirez-Pastor, 2021. "Opinion evolution in the presence of constant propaganda: homogeneous and localized cases," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 94(1), pages 1-11, January.
    10. Toth, Gabor & Galam, Serge, 2022. "Deviations from the majority: A local flip model," Chaos, Solitons & Fractals, Elsevier, vol. 159(C).
    11. Tiwari, Mukesh & Yang, Xiguang & Sen, Surajit, 2021. "Modeling the nonlinear effects of opinion kinematics in elections: A simple Ising model with random field based study," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 582(C).
    12. Katarzyna Ostasiewicz & Michal H. Tyc & Piotr Goliczewski & Piotr Magnuszewski & Andrzej Radosz & Jan Sendzimir, 2006. "Integrating economic and psychological insights in binary choice models with social interactions," Papers physics/0609170, arXiv.org.
    13. Karataieva, Tatiana & Koshmanenko, Volodymyr & Krawczyk, Małgorzata J. & Kułakowski, Krzysztof, 2019. "Mean field model of a game for power," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 525(C), pages 535-547.
    14. Agnieszka Kowalska-Styczeń & Krzysztof Malarz, 2020. "Noise induced unanimity and disorder in opinion formation," PLOS ONE, Public Library of Science, vol. 15(7), pages 1-22, July.
    15. Ghezelbash, Ehsan & Yazdanpanah, Mohammad Javad & Asadpour, Masoud, 2019. "Polarization in cooperative networks through optimal placement of informed agents," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 536(C).
    16. Wang, Chaoqian, 2021. "Opinion dynamics with bilateral propaganda and unilateral information blockade," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 566(C).
    17. Muslim, Roni & Wella, Sasfan A. & Nugraha, Ahmad R.T., 2022. "Phase transition in the majority rule model with the nonconformist agents," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 608(P2).
    18. Benjamin Cabrera & Björn Ross & Daniel Röchert & Felix Brünker & Stefan Stieglitz, 2021. "The influence of community structure on opinion expression: an agent-based model," Journal of Business Economics, Springer, vol. 91(9), pages 1331-1355, November.
    19. Shane T. Mueller & Yin-Yin Sarah Tan, 2018. "Cognitive perspectives on opinion dynamics: the role of knowledge in consensus formation, opinion divergence, and group polarization," Journal of Computational Social Science, Springer, vol. 1(1), pages 15-48, January.
    20. Castro, Luis E. & Shaikh, Nazrul I., 2018. "A particle-learning-based approach to estimate the influence matrix of online social networks," Computational Statistics & Data Analysis, Elsevier, vol. 126(C), pages 1-18.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:jnddns:140984. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.