Nothing Special   »   [go: up one dir, main page]

IDEAS home Printed from https://ideas.repec.org/a/eee/transb/v111y2018icp227-243.html
   My bibliography  Save this article

The integration of item-sharing and crowdshipping: Can collaborative consumption be pushed by delivering through the crowd?

Author

Listed:
  • Behrend, Moritz
  • Meisel, Frank
Abstract
Item-sharing and crowdshipping are two concepts of the sharing economy. In item-sharing, members of a sharing community can temporarily rent items such as tools or leisure equipment from one another. In crowdshipping, private drivers offer to execute delivery jobs for other people on trips they would make anyway. Since the peer-to-peer exchange in item-sharing involves repeated, inefficient ‘last-mile’ transports of small shipments, we investigate here whether the integration of item-sharing and crowdshipping has the potential to facilitate collaborative consumption. To this end, the decision making for an integrated item-sharing and crowdshipping platform is modeled. This platform matches supplies, requests, and planned trips of the community members. We develop mathematical models and heuristics for maximizing the platform’s profit and the number of fulfilled requests. Our results quantify and confirm the substantial benefit of integrating item-sharing and crowdshipping.

Suggested Citation

  • Behrend, Moritz & Meisel, Frank, 2018. "The integration of item-sharing and crowdshipping: Can collaborative consumption be pushed by delivering through the crowd?," Transportation Research Part B: Methodological, Elsevier, vol. 111(C), pages 227-243.
  • Handle: RePEc:eee:transb:v:111:y:2018:i:c:p:227-243
    DOI: 10.1016/j.trb.2018.02.017
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0191261517308810
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.trb.2018.02.017?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lee, Alan & Savelsbergh, Martin, 2015. "Dynamic ridesharing: Is there a role for dedicated drivers?," Transportation Research Part B: Methodological, Elsevier, vol. 81(P2), pages 483-497.
    2. Michael Z. Spivey & Warren B. Powell, 2004. "The Dynamic Assignment Problem," Transportation Science, INFORMS, vol. 38(4), pages 399-419, November.
    3. Devari, Aashwinikumar & Nikolaev, Alexander G. & He, Qing, 2017. "Crowdsourcing the last mile delivery of online orders by exploiting the social networks of retail store customers," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 105(C), pages 105-122.
    4. Fleura Bardhi & Giana M. Eckhardt, 2012. "Access-Based Consumption: The Case of Car Sharing," Journal of Consumer Research, Journal of Consumer Research Inc., vol. 39(4), pages 881-898.
    5. Stiglic, Mitja & Agatz, Niels & Savelsbergh, Martin & Gradisar, Mirko, 2016. "Making dynamic ride-sharing work: The impact of driver and rider flexibility," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 91(C), pages 190-207.
    6. Furuhata, Masabumi & Dessouky, Maged & Ordóñez, Fernando & Brunet, Marc-Etienne & Wang, Xiaoqing & Koenig, Sven, 2013. "Ridesharing: The state-of-the-art and future directions," Transportation Research Part B: Methodological, Elsevier, vol. 57(C), pages 28-46.
    7. Arslan, A.M. & Agatz, N.A.H. & Kroon, L.G. & Zuidwijk, R.A., 2016. "Crowdsourced Delivery: A Dynamic Pickup and Delivery Problem with Ad-hoc Drivers," ERIM Report Series Research in Management ERS-2016-003-LIS, Erasmus Research Institute of Management (ERIM), ERIM is the joint research institute of the Rotterdam School of Management, Erasmus University and the Erasmus School of Economics (ESE) at Erasmus University Rotterdam.
    8. Archetti, Claudia & Savelsbergh, Martin & Speranza, M. Grazia, 2016. "The Vehicle Routing Problem with Occasional Drivers," European Journal of Operational Research, Elsevier, vol. 254(2), pages 472-480.
    9. Punel, Aymeric & Stathopoulos, Amanda, 2017. "Modeling the acceptability of crowdsourced goods deliveries: Role of context and experience effects," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 105(C), pages 18-38.
    10. Kafle, Nabin & Zou, Bo & Lin, Jane, 2017. "Design and modeling of a crowdsource-enabled system for urban parcel relay and delivery," Transportation Research Part B: Methodological, Elsevier, vol. 99(C), pages 62-82.
    11. Wang, Yuan & Zhang, Dongxiang & Liu, Qing & Shen, Fumin & Lee, Loo Hay, 2016. "Towards enhancing the last-mile delivery: An effective crowd-tasking model with scalable solutions," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 93(C), pages 279-293.
    12. Jean-François Cordeau & Gilbert Laporte, 2007. "The dial-a-ride problem: models and algorithms," Annals of Operations Research, Springer, vol. 153(1), pages 29-46, September.
    13. Agatz, Niels & Erera, Alan & Savelsbergh, Martin & Wang, Xing, 2012. "Optimization for dynamic ride-sharing: A review," European Journal of Operational Research, Elsevier, vol. 223(2), pages 295-303.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Nils Boysen & Stefan Fedtke & Stefan Schwerdfeger, 2021. "Last-mile delivery concepts: a survey from an operational research perspective," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 43(1), pages 1-58, March.
    2. Shang, Dawei & Wu, Weiwei, 2022. "Does green morality lead to collaborative consumption behavior toward online collaborative redistribution platforms? Evidence from emerging markets shows the asymmetric roles of pro-environmental self," Journal of Retailing and Consumer Services, Elsevier, vol. 68(C).
    3. Martin W.P Savelsbergh & Marlin W. Ulmer, 2022. "Challenges and opportunities in crowdsourced delivery planning and operations," 4OR, Springer, vol. 20(1), pages 1-21, March.
    4. Valerio Gatta & Edoardo Marcucci & Marialisa Nigro & Sergio Maria Patella & Simone Serafini, 2018. "Public Transport-Based Crowdshipping for Sustainable City Logistics: Assessing Economic and Environmental Impacts," Sustainability, MDPI, vol. 11(1), pages 1-14, December.
    5. Akbar, Usman & Jain, Avi Anand & Bråthen, Svein, 2024. "Sustainability assessment of inter-urban crowdshipping - A case study approach," Research in Transportation Economics, Elsevier, vol. 103(C).
    6. Alireza Ermagun & Ali Shamshiripour & Amanda Stathopoulos, 2020. "Performance analysis of crowd-shipping in urban and suburban areas," Transportation, Springer, vol. 47(4), pages 1955-1985, August.
    7. Agnieszka Szmelter-Jarosz & Jagienka Rześny-Cieplińska, 2019. "Priorities of Urban Transport System Stakeholders According to Crowd Logistics Solutions in City Areas. A Sustainability Perspective," Sustainability, MDPI, vol. 12(1), pages 1-19, December.
    8. Behrend, Moritz & Meisel, Frank & Fagerholt, Kjetil & Andersson, Henrik, 2019. "An exact solution method for the capacitated item-sharing and crowdshipping problem," European Journal of Operational Research, Elsevier, vol. 279(2), pages 589-604.
    9. Marlin Ulmer & Martin Savelsbergh, 2020. "Workforce Scheduling in the Era of Crowdsourced Delivery," Transportation Science, INFORMS, vol. 54(4), pages 1113-1133, July.
    10. Ausseil, Rosemonde & Ulmer, Marlin W. & Pazour, Jennifer A., 2024. "Online acceptance probability approximation in peer-to-peer transportation," Omega, Elsevier, vol. 123(C).
    11. Boysen, Nils & Emde, Simon & Schwerdfeger, Stefan, 2022. "Crowdshipping by employees of distribution centers: Optimization approaches for matching supply and demand," European Journal of Operational Research, Elsevier, vol. 296(2), pages 539-556.
    12. Ghaderi, Hadi & Zhang, Lele & Tsai, Pei-Wei & Woo, Jihoon, 2022. "Crowdsourced last-mile delivery with parcel lockers," International Journal of Production Economics, Elsevier, vol. 251(C).
    13. John Olsson & Daniel Hellström & Henrik Pålsson, 2019. "Framework of Last Mile Logistics Research: A Systematic Review of the Literature," Sustainability, MDPI, vol. 11(24), pages 1-25, December.
    14. Behrend, Moritz & Meisel, Frank & Fagerholt, Kjetil & Andersson, Henrik, 2021. "A multi-period analysis of the integrated item-sharing and crowdshipping problem," European Journal of Operational Research, Elsevier, vol. 292(2), pages 483-499.
    15. Wang, Li & Xu, Min & Qin, Hu, 2023. "Joint optimization of parcel allocation and crowd routing for crowdsourced last-mile delivery," Transportation Research Part B: Methodological, Elsevier, vol. 171(C), pages 111-135.
    16. Mancini, Simona & Gansterer, Margaretha, 2022. "Bundle generation for last-mile delivery with occasional drivers," Omega, Elsevier, vol. 108(C).
    17. Bathke, Henrik & Hartmann, Evi, 2021. "Accepting a crowdsourced delivery - A choice-based conjoint analysis," Chapters from the Proceedings of the Hamburg International Conference of Logistics (HICL), in: Jahn, Carlos & Kersten, Wolfgang & Ringle, Christian M. (ed.), Adapting to the Future: Maritime and City Logistics in the Context of Digitalization and Sustainability. Proceedings of the Hamburg International Conf, volume 32, pages 65-95, Hamburg University of Technology (TUHH), Institute of Business Logistics and General Management.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mourad, Abood & Puchinger, Jakob & Chu, Chengbin, 2019. "A survey of models and algorithms for optimizing shared mobility," Transportation Research Part B: Methodological, Elsevier, vol. 123(C), pages 323-346.
    2. Behrend, Moritz & Meisel, Frank & Fagerholt, Kjetil & Andersson, Henrik, 2019. "An exact solution method for the capacitated item-sharing and crowdshipping problem," European Journal of Operational Research, Elsevier, vol. 279(2), pages 589-604.
    3. Alireza Ermagun & Ali Shamshiripour & Amanda Stathopoulos, 2020. "Performance analysis of crowd-shipping in urban and suburban areas," Transportation, Springer, vol. 47(4), pages 1955-1985, August.
    4. Mofidi, Seyed Shahab & Pazour, Jennifer A., 2019. "When is it beneficial to provide freelance suppliers with choice? A hierarchical approach for peer-to-peer logistics platforms," Transportation Research Part B: Methodological, Elsevier, vol. 126(C), pages 1-23.
    5. Punel, Aymeric & Stathopoulos, Amanda, 2017. "Modeling the acceptability of crowdsourced goods deliveries: Role of context and experience effects," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 105(C), pages 18-38.
    6. Alnaggar, Aliaa & Gzara, Fatma & Bookbinder, James H., 2021. "Crowdsourced delivery: A review of platforms and academic literature," Omega, Elsevier, vol. 98(C).
    7. Cleophas, Catherine & Cottrill, Caitlin & Ehmke, Jan Fabian & Tierney, Kevin, 2019. "Collaborative urban transportation: Recent advances in theory and practice," European Journal of Operational Research, Elsevier, vol. 273(3), pages 801-816.
    8. Behrend, Moritz & Meisel, Frank & Fagerholt, Kjetil & Andersson, Henrik, 2021. "A multi-period analysis of the integrated item-sharing and crowdshipping problem," European Journal of Operational Research, Elsevier, vol. 292(2), pages 483-499.
    9. Ermagun, Alireza & Stathopoulos, Amanda, 2018. "To bid or not to bid: An empirical study of the supply determinants of crowd-shipping," Transportation Research Part A: Policy and Practice, Elsevier, vol. 116(C), pages 468-483.
    10. Tao Yang & Weixin Wang, 2022. "Logistics Network Distribution Optimization Based on Vehicle Sharing," Sustainability, MDPI, vol. 14(4), pages 1-12, February.
    11. Pourrahmani, Elham & Jaller, Miguel, 2021. "Crowdshipping in last mile deliveries: Operational challenges and research opportunities," Socio-Economic Planning Sciences, Elsevier, vol. 78(C).
    12. Sun, Yanshuo & Chen, Zhi-Long & Zhang, Lei, 2020. "Nonprofit peer-to-peer ridesharing optimization," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 142(C).
    13. Ke, Jintao & Yang, Hai & Li, Xinwei & Wang, Hai & Ye, Jieping, 2020. "Pricing and equilibrium in on-demand ride-pooling markets," Transportation Research Part B: Methodological, Elsevier, vol. 139(C), pages 411-431.
    14. Allahviranloo, Mahdieh & Baghestani, Amirhossein, 2019. "A dynamic crowdshipping model and daily travel behavior," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 128(C), pages 175-190.
    15. Nils Boysen & Stefan Fedtke & Stefan Schwerdfeger, 2021. "Last-mile delivery concepts: a survey from an operational research perspective," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 43(1), pages 1-58, March.
    16. Tapia, Rodrigo J. & Kourounioti, Ioanna & Thoen, Sebastian & de Bok, Michiel & Tavasszy, Lori, 2023. "A disaggregate model of passenger-freight matching in crowdshipping services," Transportation Research Part A: Policy and Practice, Elsevier, vol. 169(C).
    17. Horner, Hannah & Pazour, Jennifer & Mitchell, John E., 2021. "Optimizing driver menus under stochastic selection behavior for ridesharing and crowdsourced delivery," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 153(C).
    18. Bhoopalam, Anirudh Kishore & Agatz, Niels & Zuidwijk, Rob, 2018. "Planning of truck platoons: A literature review and directions for future research," Transportation Research Part B: Methodological, Elsevier, vol. 107(C), pages 212-228.
    19. Stiglic, M. & Agatz, N.A.H. & Savelsbergh, M.W.P. & Gradisar, M., 2016. "Enhancing Urban Mobility: Integrating Ride-sharing and Public Transit," ERIM Report Series Research in Management ERS-2016-006-LIS, Erasmus Research Institute of Management (ERIM), ERIM is the joint research institute of the Rotterdam School of Management, Erasmus University and the Erasmus School of Economics (ESE) at Erasmus University Rotterdam.
    20. Xing Wang & Niels Agatz & Alan Erera, 2018. "Stable Matching for Dynamic Ride-Sharing Systems," Transportation Science, INFORMS, vol. 52(4), pages 850-867, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transb:v:111:y:2018:i:c:p:227-243. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/548/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.