Nothing Special   »   [go: up one dir, main page]

IDEAS home Printed from https://ideas.repec.org/a/eee/intfor/v33y2017i4p958-969.html
   My bibliography  Save this article

Forecasting multidimensional tail risk at short and long horizons

Author

Listed:
  • Polanski, Arnold
  • Stoja, Evarist
Abstract
We define the Multidimensional Value at Risk (MVaR) as a natural generalization of VaR. This generalization makes a number of important applications possible. For example, many techniques developed for VaR can be applied to MVaR directly. As an illustration, we employ VaR forecasting and evaluation techniques. One of our forecasting models builds on the progress made in the volatility literature and decomposes MVaR into long-term trend and short-term cycle components. We compute short- and long-term MVaR forecasts for several multidimensional time series and discuss their (un)conditional accuracy.

Suggested Citation

  • Polanski, Arnold & Stoja, Evarist, 2017. "Forecasting multidimensional tail risk at short and long horizons," International Journal of Forecasting, Elsevier, vol. 33(4), pages 958-969.
  • Handle: RePEc:eee:intfor:v:33:y:2017:i:4:p:958-969
    DOI: 10.1016/j.ijforecast.2017.05.005
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0169207017300602
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ijforecast.2017.05.005?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Laniado Rodas, Henry, 2015. "A Directional Multivariate Value at Risk," DES - Working Papers. Statistics and Econometrics. WS ws1501, Universidad Carlos III de Madrid. Departamento de Estadística.
    2. John Y. Campbell & Sanford J. Grossman & Jiang Wang, 1993. "Trading Volume and Serial Correlation in Stock Returns," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 108(4), pages 905-939.
    3. Robert F. Engle & Jose Gonzalo Rangel, 2008. "The Spline-GARCH Model for Low-Frequency Volatility and Its Global Macroeconomic Causes," The Review of Financial Studies, Society for Financial Studies, vol. 21(3), pages 1187-1222, May.
    4. Marianne Baxter & Robert G. King, 1999. "Measuring Business Cycles: Approximate Band-Pass Filters For Economic Time Series," The Review of Economics and Statistics, MIT Press, vol. 81(4), pages 575-593, November.
    5. Andrew Ang & Geert Bekaert, 2002. "International Asset Allocation With Regime Shifts," The Review of Financial Studies, Society for Financial Studies, vol. 15(4), pages 1137-1187.
    6. Gai, Prasanna & Kapadia, Sujit, 2010. "Contagion in financial networks," Bank of England working papers 383, Bank of England.
    7. Takahashi, Makoto & Watanabe, Toshiaki & Omori, Yasuhiro, 2016. "Volatility and quantile forecasts by realized stochastic volatility models with generalized hyperbolic distribution," International Journal of Forecasting, Elsevier, vol. 32(2), pages 437-457.
    8. Keith Kuester & Stefan Mittnik & Marc S. Paolella, 2006. "Value-at-Risk Prediction: A Comparison of Alternative Strategies," Journal of Financial Econometrics, Oxford University Press, vol. 4(1), pages 53-89.
    9. Paul H. Kupiec, 1995. "Techniques for verifying the accuracy of risk measurement models," Finance and Economics Discussion Series 95-24, Board of Governors of the Federal Reserve System (U.S.).
    10. Nicholas Bloom, 2009. "The Impact of Uncertainty Shocks," Econometrica, Econometric Society, vol. 77(3), pages 623-685, May.
    11. Hodrick, Robert J & Prescott, Edward C, 1997. "Postwar U.S. Business Cycles: An Empirical Investigation," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 29(1), pages 1-16, February.
    12. Hautsch, Nikolaus & Schaumburg, Julia & Schienle, Melanie, 2014. "Forecasting systemic impact in financial networks," International Journal of Forecasting, Elsevier, vol. 30(3), pages 781-794.
    13. Barry Eichengreen & Ashoka Mody, 1998. "What Explains Changing Spreads on Emerging-Market Debt: Fundamentals or Market Sentiment?," NBER Working Papers 6408, National Bureau of Economic Research, Inc.
    14. McNeil, Alexander J. & Frey, Rudiger, 2000. "Estimation of tail-related risk measures for heteroscedastic financial time series: an extreme value approach," Journal of Empirical Finance, Elsevier, vol. 7(3-4), pages 271-300, November.
    15. Tobias Adrian & Markus K. Brunnermeier, 2016. "CoVaR," American Economic Review, American Economic Association, vol. 106(7), pages 1705-1741, July.
      • Tobias Adrian & Markus K. Brunnermeier, 2008. "CoVaR," Staff Reports 348, Federal Reserve Bank of New York.
      • Tobias Adrian & Markus K. Brunnermeier, 2011. "CoVaR," NBER Working Papers 17454, National Bureau of Economic Research, Inc.
    16. Robert F. Engle & Simone Manganelli, 2004. "CAViaR: Conditional Autoregressive Value at Risk by Regression Quantiles," Journal of Business & Economic Statistics, American Statistical Association, vol. 22, pages 367-381, October.
    17. Kee-Hong Bae & G. Andrew Karolyi & René M. Stulz, 2003. "A New Approach to Measuring Financial Contagion," The Review of Financial Studies, Society for Financial Studies, vol. 16(3), pages 717-763, July.
    18. Shurong Zheng & Ning-Zhong Shi & Zhengjun Zhang, 2012. "Generalized Measures of Correlation for Asymmetry, Nonlinearity, and Beyond," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 107(499), pages 1239-1252, September.
    19. Heikki Lehkonen, 2015. "Stock Market Integration and the Global Financial Crisis," Review of Finance, European Finance Association, vol. 19(5), pages 2039-2094.
    20. Xavier Gabaix, 2009. "Power Laws in Economics and Finance," Annual Review of Economics, Annual Reviews, vol. 1(1), pages 255-294, May.
    21. Christoffersen, Peter F, 1998. "Evaluating Interval Forecasts," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 39(4), pages 841-862, November.
    22. U. Cherubini & E. Luciano, 2002. "Bivariate option pricing with copulas," Applied Mathematical Finance, Taylor & Francis Journals, vol. 9(2), pages 69-85.
    23. Lawrence J. Christiano & Terry J. Fitzgerald, 2003. "The Band Pass Filter," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 44(2), pages 435-465, May.
    24. repec:adr:anecst:y:2000:i:60:p:10 is not listed on IDEAS
    25. Chen, Nai-Fu & Roll, Richard & Ross, Stephen A, 1986. "Economic Forces and the Stock Market," The Journal of Business, University of Chicago Press, vol. 59(3), pages 383-403, July.
    26. Ra'ul Torres & Rosa E. Lillo & Henry Laniado, 2015. "A Directional Multivariate Value at Risk," Papers 1502.00908, arXiv.org.
    27. Jon Danielsson & Casper G. De Vries, 2000. "Value-at-Risk and Extreme Returns," Annals of Economics and Statistics, GENES, issue 60, pages 239-270.
    28. Nikolaus Hautsch & Julia Schaumburg & Melanie Schienle, 2015. "Financial Network Systemic Risk Contributions," Review of Finance, European Finance Association, vol. 19(2), pages 685-738.
    29. H. A. Hauksson & M. Dacorogna & T. Domenig & U. Mller & G. Samorodnitsky, 2001. "Multivariate extremes, aggregation and risk estimation," Quantitative Finance, Taylor & Francis Journals, vol. 1(1), pages 79-95.
    30. Torres, Raúl & Lillo, Rosa E. & Laniado, Henry, 2015. "A directional multivariate value at risk," Insurance: Mathematics and Economics, Elsevier, vol. 65(C), pages 111-123.
    31. Polanski, Arnold & Stoja, Evarist, 2012. "Efficient evaluation of multidimensional time-varying density forecasts, with applications to risk management," International Journal of Forecasting, Elsevier, vol. 28(2), pages 343-352.
    32. Liangjun Su & Martin Spindler, 2013. "Nonparametric Testing for Asymmetric Information," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 31(2), pages 208-225, April.
    33. Brandt, Michael W. & Jones, Christopher S., 2006. "Volatility Forecasting With Range-Based EGARCH Models," Journal of Business & Economic Statistics, American Statistical Association, vol. 24, pages 470-486, October.
    34. Engle, Robert F. & White (the late), Halbert (ed.), 1999. "Cointegration, Causality, and Forecasting: Festschrift in Honour of Clive W. J. Granger," OUP Catalogue, Oxford University Press, number 9780198296836.
    35. Sassan Alizadeh & Michael W. Brandt & Francis X. Diebold, 2002. "Range‐Based Estimation of Stochastic Volatility Models," Journal of Finance, American Finance Association, vol. 57(3), pages 1047-1091, June.
    36. Nieto, Maria Rosa & Ruiz, Esther, 2016. "Frontiers in VaR forecasting and backtesting," International Journal of Forecasting, Elsevier, vol. 32(2), pages 475-501.
    37. L. C. G. Rogers & L. A. M. Veraart, 2013. "Failure and Rescue in an Interbank Network," Management Science, INFORMS, vol. 59(4), pages 882-898, April.
    38. Christian Meine & Hendrik Supper & Gregor N. F. Weiß, 2016. "Is Tail Risk Priced in Credit Default Swap Premia?," Review of Finance, European Finance Association, vol. 20(1), pages 287-336.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lu Wang & Feng Ma & Guoshan Liu, 2020. "Forecasting stock volatility in the presence of extreme shocks: Short‐term and long‐term effects," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 39(5), pages 797-810, August.
    2. Stoja, Evarist & Polanski, Arnold & Nguyen, Linh H. & Pereverzin, Aleksandr, 2023. "Does systematic tail risk matter?," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 82(C).
    3. Zhang, Li & Wang, Lu & Peng, Lijuan & Luo, Keyu, 2023. "Measuring the response of clean energy stock price volatility to extreme shocks," Renewable Energy, Elsevier, vol. 206(C), pages 1289-1300.
    4. Wang, Lu & Wu, Jiangbin & Cao, Yang & Hong, Yanran, 2022. "Forecasting renewable energy stock volatility using short and long-term Markov switching GARCH-MIDAS models: Either, neither or both?," Energy Economics, Elsevier, vol. 111(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Polanski, Arnold & Stoja, Evarist, 2017. "Forecasting multidimensional tail risk at short and long horizons," Bank of England working papers 660, Bank of England.
    2. (Jeremy) Chiu, Ching-wai & Harris, Richard D.F. & Stoja, Evarist & Chin, Michael, 2018. "Financial market Volatility, macroeconomic fundamentals and investor Sentiment," Journal of Banking & Finance, Elsevier, vol. 92(C), pages 130-145.
    3. Andersen, Torben G. & Bollerslev, Tim & Christoffersen, Peter F. & Diebold, Francis X., 2013. "Financial Risk Measurement for Financial Risk Management," Handbook of the Economics of Finance, in: G.M. Constantinides & M. Harris & R. M. Stulz (ed.), Handbook of the Economics of Finance, volume 2, chapter 0, pages 1127-1220, Elsevier.
    4. Benjamin R. Auer & Benjamin Mögel, 2016. "How Accurate are Modern Value-at-Risk Estimators Derived from Extreme Value Theory?," CESifo Working Paper Series 6288, CESifo.
    5. Benjamin Mögel & Benjamin R. Auer, 2018. "How accurate are modern Value-at-Risk estimators derived from extreme value theory?," Review of Quantitative Finance and Accounting, Springer, vol. 50(4), pages 979-1030, May.
    6. Chen, Cathy W.S. & Gerlach, Richard & Hwang, Bruce B.K. & McAleer, Michael, 2012. "Forecasting Value-at-Risk using nonlinear regression quantiles and the intra-day range," International Journal of Forecasting, Elsevier, vol. 28(3), pages 557-574.
    7. Gaglianone, Wagner Piazza & Lima, Luiz Renato & Linton, Oliver & Smith, Daniel R., 2011. "Evaluating Value-at-Risk Models via Quantile Regression," Journal of Business & Economic Statistics, American Statistical Association, vol. 29(1), pages 150-160.
    8. Arnold Polanski & Evarist Stoja & Ching‐Wai (Jeremy) Chiu, 2021. "Tail risk interdependence," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 26(4), pages 5499-5511, October.
    9. Harvey,Andrew C., 2013. "Dynamic Models for Volatility and Heavy Tails," Cambridge Books, Cambridge University Press, number 9781107034723, September.
    10. Gang-Jin Wang & Chi Xie & Kaijian He & H. Eugene Stanley, 2017. "Extreme risk spillover network: application to financial institutions," Quantitative Finance, Taylor & Francis Journals, vol. 17(9), pages 1417-1433, September.
    11. Wilson Calmon & Eduardo Ferioli & Davi Lettieri & Johann Soares & Adrian Pizzinga, 2021. "An Extensive Comparison of Some Well‐Established Value at Risk Methods," International Statistical Review, International Statistical Institute, vol. 89(1), pages 148-166, April.
    12. Laporta, Alessandro G. & Merlo, Luca & Petrella, Lea, 2018. "Selection of Value at Risk Models for Energy Commodities," Energy Economics, Elsevier, vol. 74(C), pages 628-643.
    13. Polanski, Arnold & Stoja, Evarist, 2015. "Extreme risk interdependence," Bank of England working papers 563, Bank of England.
    14. Louzis, Dimitrios P. & Xanthopoulos-Sisinis, Spyros & Refenes, Apostolos P., 2011. "Are realized volatility models good candidates for alternative Value at Risk prediction strategies?," MPRA Paper 30364, University Library of Munich, Germany.
    15. Nieto, María Rosa, 2008. "Measuring financial risk : comparison of alternative procedures to estimate VaR and ES," DES - Working Papers. Statistics and Econometrics. WS ws087326, Universidad Carlos III de Madrid. Departamento de Estadística.
    16. Nieto, Maria Rosa & Ruiz, Esther, 2016. "Frontiers in VaR forecasting and backtesting," International Journal of Forecasting, Elsevier, vol. 32(2), pages 475-501.
    17. Marco Rocco, 2011. "Extreme value theory for finance: a survey," Questioni di Economia e Finanza (Occasional Papers) 99, Bank of Italy, Economic Research and International Relations Area.
    18. James M. O'Brien & Pawel J. Szerszen, 2014. "An Evaluation of Bank VaR Measures for Market Risk During and Before the Financial Crisis," Finance and Economics Discussion Series 2014-21, Board of Governors of the Federal Reserve System (U.S.).
    19. Harris, Richard D.F. & Nguyen, Linh H. & Stoja, Evarist, 2019. "Systematic extreme downside risk," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 61(C), pages 128-142.
    20. Chan Jennifer So Kuen & Ng Kok-Haur & Nitithumbundit Thanakorn & Peiris Shelton, 2019. "Efficient estimation of financial risk by regressing the quantiles of parametric distributions: An application to CARR models," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 23(2), pages 1-22, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:intfor:v:33:y:2017:i:4:p:958-969. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/ijforecast .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.