(This abstract was borrowed from another version of this item.)"> (This abstract was borrowed from another version of this item.)">
Nothing Special   »   [go: up one dir, main page]

IDEAS home Printed from https://ideas.repec.org/a/eee/gamebe/v21y1997i1-2p102-134.html
   My bibliography  Save this article

Social Learning in Recurring Games

Author

Listed:
  • Jackson, Matthew O.
  • Kalai, Ehud
Abstract
In a recurring game, a stage game is played sequentially by different groups of players. Each group receives publicly available information about the play of earlier groups. Players begin with initial uncertainty about the distribution of types (representing the preferences and strategic behavior) of players in the population. Later groups of players are able to learn from the history of play of earlier groups. We first study the evolution of beliefs in this uncertain recurring setting and then study how the structure of uncertainty and information determine the eventual convergence of play. We show that beliefs converge over time and, moreover, that the limit beliefs are empirically correct: their forecast of future public information matches the true distribution of future public information. Next, we provide sufficient conditions to ensure that the play of any stage game is eventually close to that of a Bayesian equilibrium where players know the true type generating distribution. We go further to identify conditions under which play converges to the play of a trembling-hand perfect (Bayesian) equilibrium.
(This abstract was borrowed from another version of this item.)

Suggested Citation

  • Jackson, Matthew O. & Kalai, Ehud, 1997. "Social Learning in Recurring Games," Games and Economic Behavior, Elsevier, vol. 21(1-2), pages 102-134, October.
  • Handle: RePEc:eee:gamebe:v:21:y:1997:i:1-2:p:102-134
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0899-8256(97)90583-2
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Fudenberg, Drew & Tirole, Jean, 1991. "Perfect Bayesian equilibrium and sequential equilibrium," Journal of Economic Theory, Elsevier, vol. 53(2), pages 236-260, April.
    2. Kreps, David M. & Milgrom, Paul & Roberts, John & Wilson, Robert, 1982. "Rational cooperation in the finitely repeated prisoners' dilemma," Journal of Economic Theory, Elsevier, vol. 27(2), pages 245-252, August.
    3. Fudenberg, Drew & Levine, David K, 1993. "Steady State Learning and Nash Equilibrium," Econometrica, Econometric Society, vol. 61(3), pages 547-573, May.
    4. Kalai, Ehud & Lehrer, Ehud, 1993. "Rational Learning Leads to Nash Equilibrium," Econometrica, Econometric Society, vol. 61(5), pages 1019-1045, September.
    5. Kalai, Ehud & Lehrer, Ehud, 1994. "Weak and strong merging of opinions," Journal of Mathematical Economics, Elsevier, vol. 23(1), pages 73-86, January.
    6. Lehrer, Ehud & Smorodinsky, Rann, 1997. "Repeated Large Games with Incomplete Information," Games and Economic Behavior, Elsevier, vol. 18(1), pages 116-134, January.
    7. Fudenberg, Drew & Levine, David K, 1993. "Self-Confirming Equilibrium," Econometrica, Econometric Society, vol. 61(3), pages 523-545, May.
    8. Kandori, Michihiro & Mailath, George J & Rob, Rafael, 1993. "Learning, Mutation, and Long Run Equilibria in Games," Econometrica, Econometric Society, vol. 61(1), pages 29-56, January.
    9. Kalai, Ehud & Lehrer, Ehud, 1993. "Subjective Equilibrium in Repeated Games," Econometrica, Econometric Society, vol. 61(5), pages 1231-1240, September.
    10. Young, H Peyton, 1993. "The Evolution of Conventions," Econometrica, Econometric Society, vol. 61(1), pages 57-84, January.
    11. Radner, Roy, 1980. "Collusive behavior in noncooperative epsilon-equilibria of oligopolies with long but finite lives," Journal of Economic Theory, Elsevier, vol. 22(2), pages 136-154, April.
    12. Abreu, Dilip & Pearce, David & Stacchetti, Ennio, 1986. "Optimal cartel equilibria with imperfect monitoring," Journal of Economic Theory, Elsevier, vol. 39(1), pages 251-269, June.
    13. Bikhchandani, Sushil & Hirshleifer, David & Welch, Ivo, 1992. "A Theory of Fads, Fashion, Custom, and Cultural Change in Informational Cascades," Journal of Political Economy, University of Chicago Press, vol. 100(5), pages 992-1026, October.
    14. Abhijit V. Banerjee, 1992. "A Simple Model of Herd Behavior," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 107(3), pages 797-817.
    15. Lehrer, E, 1989. "Lower Equilibrium Payoffs in Two-Player Repeated Games with Non-observable Actions," International Journal of Game Theory, Springer;Game Theory Society, vol. 18(1), pages 57-89.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sorin, Sylvain, 1999. "Merging, Reputation, and Repeated Games with Incomplete Information," Games and Economic Behavior, Elsevier, vol. 29(1-2), pages 274-308, October.
    2. Jehiel, Philippe, 1998. "Learning to Play Limited Forecast Equilibria," Games and Economic Behavior, Elsevier, vol. 22(2), pages 274-298, February.
    3. Mario Gilli, 2002. "Rational Learning in Imperfect Monitoring Games," Working Papers 46, University of Milano-Bicocca, Department of Economics, revised Mar 2002.
    4. Macault, Emilien & Scarsini, Marco & Tomala, Tristan, 2022. "Social learning in nonatomic routing games," Games and Economic Behavior, Elsevier, vol. 132(C), pages 221-233.
    5. Sobel, Joel, 2000. "Economists' Models of Learning," Journal of Economic Theory, Elsevier, vol. 94(2), pages 241-261, October.
    6. Matthew O. Jackson & Ehud Kalai, 1997. "False Reputation in a Society of Players," Discussion Papers 1184R, Northwestern University, Center for Mathematical Studies in Economics and Management Science.
    7. Roth, Alvin E. & Erev, Ido, 1995. "Learning in extensive-form games: Experimental data and simple dynamic models in the intermediate term," Games and Economic Behavior, Elsevier, vol. 8(1), pages 164-212.
    8. Gale, Douglas & Rosenthal, Robert W., 1999. "Experimentation, Imitation, and Stochastic Stability," Journal of Economic Theory, Elsevier, vol. 84(1), pages 1-40, January.
    9. Jackson, Matthew O. & Kalai, Ehud, 1999. "Reputation versus Social Learning," Journal of Economic Theory, Elsevier, vol. 88(1), pages 40-59, September.
    10. Rhode, Paul & Stegeman, Mark, 2001. "Non-Nash equilibria of Darwinian dynamics with applications to duopoly," International Journal of Industrial Organization, Elsevier, vol. 19(3-4), pages 415-453, March.
    11. Schipper, Burkhard C., 2021. "Discovery and equilibrium in games with unawareness," Journal of Economic Theory, Elsevier, vol. 198(C).
    12. Philippe Jehiel, 2022. "Analogy-Based Expectation Equilibrium and Related Concepts:Theory, Applications, and Beyond," Working Papers halshs-03735680, HAL.
    13. Hopkins, Ed, 1999. "Learning, Matching, and Aggregation," Games and Economic Behavior, Elsevier, vol. 26(1), pages 79-110, January.
    14. Yoo, Seung Han, 2014. "Learning a population distribution," Journal of Economic Dynamics and Control, Elsevier, vol. 48(C), pages 188-201.
    15. Mengel, Friederike, 2014. "Learning by (limited) forward looking players," Journal of Economic Behavior & Organization, Elsevier, vol. 108(C), pages 59-77.
    16. Pongou, Roland & Serrano, Roberto, 2013. "Dynamic Network Formation in Two-Sided Economies," MPRA Paper 46021, University Library of Munich, Germany.
    17. Manxi Wu & Saurabh Amin & Asuman Ozdaglar, 2021. "Multi-agent Bayesian Learning with Best Response Dynamics: Convergence and Stability," Papers 2109.00719, arXiv.org.
    18. Sandroni, Alvaro, 1998. "Necessary and Sufficient Conditions for Convergence to Nash Equilibrium: The Almost Absolute Continuity Hypothesis," Games and Economic Behavior, Elsevier, vol. 22(1), pages 121-147, January.
    19. Alvaro Sandroni, "undated". ""Necessary and Sufficient Conditions for Convergence to Nash Equilibrium: The Almost Absolute Continuity Hypothesis''," CARESS Working Papres 95-08, University of Pennsylvania Center for Analytic Research and Economics in the Social Sciences.
    20. Fudenberg, Drew & Kreps, David M., 1995. "Learning in extensive-form games I. Self-confirming equilibria," Games and Economic Behavior, Elsevier, vol. 8(1), pages 20-55.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:gamebe:v:21:y:1997:i:1-2:p:102-134. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/622836 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.