Nothing Special   »   [go: up one dir, main page]

IDEAS home Printed from https://ideas.repec.org/a/eee/foreco/v19y2013i4p361-383.html
   My bibliography  Save this article

A multi-sector intertemporal optimization approach to assess the GHG implications of U.S. forest and agricultural biomass electricity expansion

Author

Listed:
  • Latta, Gregory S.
  • Baker, Justin S.
  • Beach, Robert H.
  • Rose, Steven K.
  • McCarl, Bruce A.
Abstract
This study applies an intertemporal partial equilibrium model of the U.S. Forest and Agricultural sectors to assess the market, land use, and greenhouse gas (GHG) implications of biomass electricity expansion. Results show how intertemporal optimization procedures can yield different biomass feedstock portfolios and GHG performance metrics at different points in time. We examine the implications of restricting feedstock eligibility, land use change, and commodity substitution to put our results in the context of previous forest-only modeling efforts. Our results highlight the importance of dynamic considerations and forest and agricultural sector interactions on projecting the GHG effects of biomass electricity expansion in the U.S.

Suggested Citation

  • Latta, Gregory S. & Baker, Justin S. & Beach, Robert H. & Rose, Steven K. & McCarl, Bruce A., 2013. "A multi-sector intertemporal optimization approach to assess the GHG implications of U.S. forest and agricultural biomass electricity expansion," Journal of Forest Economics, Elsevier, vol. 19(4), pages 361-383.
  • Handle: RePEc:eee:foreco:v:19:y:2013:i:4:p:361-383
    DOI: 10.1016/j.jfe.2013.05.003
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1104689913000226
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jfe.2013.05.003?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Palmer, Karen & Paul, Anthony & Woerman, Matt & Steinberg, Daniel C., 2011. "Federal policies for renewable electricity: Impacts and interactions," Energy Policy, Elsevier, vol. 39(7), pages 3975-3991, July.
    2. Moiseyev, Alexander & Solberg, Birger & Kallio, A. Maarit I. & Lindner, Marcus, 2011. "An economic analysis of the potential contribution of forest biomass to the EU RES target and its implications for the EU forest industries," Journal of Forest Economics, Elsevier, vol. 17(2), pages 197-213, April.
    3. Lecocq, Franck & Caurla, Sylvain & Delacote, Philippe & Barkaoui, Ahmed & Sauquet, Alexandre, 2011. "Paying for forest carbon or stimulating fuelwood demand? Insights from the French Forest Sector Model," Journal of Forest Economics, Elsevier, vol. 17(2), pages 157-168, April.
    4. Latta, Gregory & Adams, Darius M. & Alig, Ralph J. & White, Eric, 2011. "Simulated effects of mandatory versus voluntary participation in private forest carbon offset markets in the United States," Journal of Forest Economics, Elsevier, vol. 17(2), pages 127-141, April.
    5. Touš, Michal & Pavlas, Martin & Stehlík, Petr & Popela, Pavel, 2011. "Effective biomass integration into existing combustion plant," Energy, Elsevier, vol. 36(8), pages 4654-4662.
    6. Alexandre Sauquet & Ahmed Barkaoui & Sylvain Caurla & Philippe Delacote & Franck Lecocq, 2011. "Paying for forest carbon or stimulating fuel wood demand? Insights from the French Forest Sector Model," Post-Print halshs-00602112, HAL.
    7. Baker, Justin Scott & McCarl, Bruce A. & Murray, Brian C. & Rose, Steven K. & Alig, Ralph J. & Adams, Darius M. & Latta, Gregory S. & Beach, Robert H. & Daigneault, Adam J., 2010. "Net Farm Income and Land Use under a U.S. Greenhouse Gas Cap and Trade," Policy Issues 93683, Agricultural and Applied Economics Association.
    8. Kretschmer, Bettina & Peterson, Sonja, 2010. "Integrating bioenergy into computable general equilibrium models -- A survey," Energy Economics, Elsevier, vol. 32(3), pages 673-686, May.
    9. Ian Hardie & Peter Parks & Peter Gottleib & David Wear, 2000. "Responsiveness of Rural and Urban Land Uses to Land Rent Determinants in the U.S. South," Land Economics, University of Wisconsin Press, vol. 76(4), pages 659-673.
    10. Ince, Peter J. & Kramp, Andrew D. & Skog, Kenneth E. & Yoo, Do-il & Sample, V. Alaric, 2011. "Modeling future U.S. forest sector market and trade impacts of expansion in wood energy consumption," Journal of Forest Economics, Elsevier, vol. 17(2), pages 142-156, April.
    11. Brown, Marilyn A. & Baek, Youngsun, 2010. "The forest products industry at an energy/climate crossroads," Energy Policy, Elsevier, vol. 38(12), pages 7665-7675, December.
    12. Kallio, A. Maarit I. & Anttila, Perttu & McCormick, Megan & Asikainen, Antti, 2011. "Are the Finnish targets for the energy use of forest chips realistic--Assessment with a spatial market model," Journal of Forest Economics, Elsevier, vol. 17(2), pages 110-126, April.
    13. Feng Song & Jinhua Zhao & Scott M. Swinton, 2011. "Switching to Perennial Energy Crops Under Uncertainty and Costly Reversibility," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 93(3), pages 764-779.
    14. Bruce McCarl & Darius Adams & Ralph Alig & John Chmelik, 2000. "Competitiveness of biomass‐fueled electrical power plants," Annals of Operations Research, Springer, vol. 94(1), pages 37-55, January.
    15. Soimakallio, S. & Mäkinen, T. & Ekholm, T. & Pahkala, K. & Mikkola, H. & Paappanen, T., 2009. "Greenhouse gas balances of transportation biofuels, electricity and heat generation in Finland--Dealing with the uncertainties," Energy Policy, Elsevier, vol. 37(1), pages 80-90, January.
    16. Buongiorno, Joseph & Raunikar, Ronald & Zhu, Shushuai, 2011. "Consequences of increasing bioenergy demand on wood and forests: An application of the Global Forest Products Model," Journal of Forest Economics, Elsevier, vol. 17(2), pages 214-229, April.
    17. Lauri, Pekka & Kallio, A. Maarit I. & Schneider, Uwe A., 2012. "Price of CO2 emissions and use of wood in Europe," Forest Policy and Economics, Elsevier, vol. 15(C), pages 123-131.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kenneth R. Szulczyk & Muhammad A. Cheema & Ross Cullen & Atiqur Rahman Khan, 2020. "Bioelectricity in Malaysia: economic feasibility, environmental and deforestation implications," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 64(2), pages 294-321, April.
    2. Baker, J.S. & Wade, C.M. & Sohngen, B.L. & Ohrel, S. & Fawcett, A.A., 2019. "Potential complementarity between forest carbon sequestration incentives and biomass energy expansion," Energy Policy, Elsevier, vol. 126(C), pages 391-401.
    3. Picciano, Paul & Aguilar, Francisco X. & Burtraw, Dallas & Mirzaee, Ashkan, 2022. "Environmental and socio-economic implications of woody biomass co-firing at coal-fired power plants," Resource and Energy Economics, Elsevier, vol. 68(C).
    4. Daigneault, Adam J. & Sohngen, Brent L. & Sedjo, Roger, 2020. "Carbon and market effects of U.S. forest taxation policy," Ecological Economics, Elsevier, vol. 178(C).
    5. Andrea Sujová & Róbert Babuka & Václav Kupčák, 2021. "Methodology of monitoring wood sources and consumption in the Czech Republic," Journal of Forest Science, Czech Academy of Agricultural Sciences, vol. 67(1), pages 1-11.
    6. Galik, Christopher S. & Abt, Robert C. & Latta, Gregory & Méley, Andréanne & Henderson, Jesse D., 2016. "Meeting renewable energy and land use objectives through public–private biomass supply partnerships," Applied Energy, Elsevier, vol. 172(C), pages 264-274.
    7. Weiwei Wang, 2022. "Agricultural and Forestry Biomass for Meeting the Renewable Fuel Standard: Implications for Land Use and GHG Emissions," Energies, MDPI, vol. 15(23), pages 1-21, November.
    8. Olivia Cintas & Göran Berndes & Annette L. Cowie & Gustaf Egnell & Hampus Holmström & Göran I. Ågren, 2016. "The climate effect of increased forest bioenergy use in Sweden: evaluation at different spatial and temporal scales," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 5(3), pages 351-369, May.
    9. Pokharel, Raju & Grala, Robert K. & Grebner, Donald L., 2017. "Woody residue utilization for bioenergy by primary forest products manufacturers: An exploratory analysis," Forest Policy and Economics, Elsevier, vol. 85(P1), pages 161-171.
    10. Xian, Hui & Colson, Gregory & Karali, Berna & Wetzstein, Michael, 2017. "Do nonrenewable-energy prices affect renewable-energy volatility? The case of wood pellets," Journal of Forest Economics, Elsevier, vol. 28(C), pages 42-48.
    11. Vass, Miriam Münnich & Elofsson, Katarina, 2016. "Is forest carbon sequestration at the expense of bioenergy and forest products cost-efficient in EU climate policy to 2050?," Journal of Forest Economics, Elsevier, vol. 24(C), pages 82-105.
    12. Panichelli, Luis & Gnansounou, Edgard, 2015. "Impact of agricultural-based biofuel production on greenhouse gas emissions from land-use change: Key modelling choices," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 344-360.
    13. Kim, Sei Jin & Baker, Justin S. & Sohngen, Brent L. & Shell, Michael, 2018. "Cumulative global forest carbon implications of regional bioenergy expansion policies," Resource and Energy Economics, Elsevier, vol. 53(C), pages 198-219.
    14. Miguel RIVIERE & Sylvain CAURLA, 2018. "Integrating non-timber objectives into bio-economic models of the forest sector: a review of recent innovations and current shortcomings," Working Papers of BETA 2018-26, Bureau d'Economie Théorique et Appliquée, UDS, Strasbourg.
    15. Johnston, Craig M.T. & Cornelis van Kooten, G., 2015. "Back to the past: Burning wood to save the globe," Ecological Economics, Elsevier, vol. 120(C), pages 185-193.
    16. Daigneault, Adam & Johnston, Craig & Korosuo, Anu & Baker, Justin S. & Forsell, Nicklas & Prestemon, Jeffrey P. & Abt, Robert C., 2019. "Developing Detailed Shared Socioeconomic Pathway (SSP) Narratives for the Global Forest Sector," Journal of Forest Economics, now publishers, vol. 34(1-2), pages 7-45, August.
    17. Galik, Christopher S. & Abt, Robert C. & Latta, Gregory & Vegh, Tibor, 2015. "The environmental and economic effects of regional bioenergy policy in the southeastern U.S," Energy Policy, Elsevier, vol. 85(C), pages 335-346.
    18. Kovacs, Kent F. & Haight, Robert G. & Moore, Karli & Popp, Michael, 2021. "Afforestation for carbon sequestration in the Lower Mississippi River Basin of Arkansas, USA: Does modeling of land use at fine spatial resolution reveal lower carbon cost?," Forest Policy and Economics, Elsevier, vol. 130(C).
    19. Raghava Rao Kommalapati & Iqbal Hossan & Venkata Sai Vamsi Botlaguduru & Hongbo Du & Ziaul Huque, 2018. "Life Cycle Environmental Impact of Biomass Co-Firing with Coal at a Power Plant in the Greater Houston Area," Sustainability, MDPI, vol. 10(7), pages 1-18, June.
    20. Baker, Justin S. & Crouch, Adam & Cai, Yongxia & Latta, Greg & Ohrel, Sara & Jones, Jason & Latané, Annah, 2018. "Logging residue supply and costs for electricity generation: Potential variability and policy considerations," Energy Policy, Elsevier, vol. 116(C), pages 397-409.
    21. Lochhead, Kyle & Ghafghazi, Saeed & Havlik, Petr & Forsell, Nicklas & Obersteiner, Michael & Bull, Gary & Mabee, Warren, 2016. "Price trends and volatility scenarios for designing forest sector transformation," Energy Economics, Elsevier, vol. 57(C), pages 184-191.
    22. G. Cornelis van Kooten, 2016. "California Dreaming: The Economics of Renewable Energy," Working Papers 2016-05, University of Victoria, Department of Economics, Resource Economics and Policy Analysis Research Group.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Galik, Christopher S. & Abt, Robert C. & Latta, Gregory & Vegh, Tibor, 2015. "The environmental and economic effects of regional bioenergy policy in the southeastern U.S," Energy Policy, Elsevier, vol. 85(C), pages 335-346.
    2. Latta, Gregory S. & Sjølie, Hanne K. & Solberg, Birger, 2013. "A review of recent developments and applications of partial equilibrium models of the forest sector," Journal of Forest Economics, Elsevier, vol. 19(4), pages 350-360.
    3. Guo, Jinggang & Gong, Peichen, 2019. "Assessing the impacts of rising fuelwood demand on Swedish forest sector: An intertemporal optimization approach," Forest Policy and Economics, Elsevier, vol. 105(C), pages 91-98.
    4. Miguel RIVIERE & Sylvain CAURLA, 2018. "Integrating non-timber objectives into bio-economic models of the forest sector: a review of recent innovations and current shortcomings," Working Papers of BETA 2018-26, Bureau d'Economie Théorique et Appliquée, UDS, Strasbourg.
    5. Hurmekoski, Elias & Hetemäki, Lauri, 2013. "Studying the future of the forest sector: Review and implications for long-term outlook studies," Forest Policy and Economics, Elsevier, vol. 34(C), pages 17-29.
    6. Lauri, Pekka & Kallio, A. Maarit I. & Schneider, Uwe A., 2012. "Price of CO2 emissions and use of wood in Europe," Forest Policy and Economics, Elsevier, vol. 15(C), pages 123-131.
    7. Caurla, Sylvain & Delacote, Philippe & Lecocq, Franck & Barkaoui, Ahmed, 2013. "Stimulating fuelwood consumption through public policies: An assessment of economic and resource impacts based on the French Forest Sector Model," Energy Policy, Elsevier, vol. 63(C), pages 338-347.
    8. Miguel Riviere & Sylvain Caurla & Philippe Delacote, 2020. "Evolving Integrated Models From Narrower Economic Tools : the Example of Forest Sector Models," Post-Print hal-02512330, HAL.
    9. Kallio, A.M.I. & Salminen, O. & Sievänen, R., 2013. "Sequester or substitute—Consequences of increased production of wood based energy on the carbon balance in Finland," Journal of Forest Economics, Elsevier, vol. 19(4), pages 402-415.
    10. Kallio, A.M.I. & Salminen, O. & Sievänen, R., 2016. "Forests in the Finnish low carbon scenarios," Journal of Forest Economics, Elsevier, vol. 23(C), pages 45-62.
    11. Alice Favero & Robert Mendelsohn, 2013. "Evaluating the Global Role of Woody Biomass as a Mitigation Strategy," Working Papers 2013.37, Fondazione Eni Enrico Mattei.
    12. Sergent, Arnaud, 2014. "Sector-based political analysis of energy transition: Green shift in the forest policy regime in France," Energy Policy, Elsevier, vol. 73(C), pages 491-500.
    13. Lochhead, Kyle & Ghafghazi, Saeed & Havlik, Petr & Forsell, Nicklas & Obersteiner, Michael & Bull, Gary & Mabee, Warren, 2016. "Price trends and volatility scenarios for designing forest sector transformation," Energy Economics, Elsevier, vol. 57(C), pages 184-191.
    14. Moiseyev, Alexander & Solberg, Birger & Kallio, A. Maarit I., 2014. "The impact of subsidies and carbon pricing on the wood biomass use for energy in the EU," Energy, Elsevier, vol. 76(C), pages 161-167.
    15. White, Eric M. & Latta, Greg & Alig, Ralph J. & Skog, Kenneth E. & Adams, Darius M., 2013. "Biomass production from the U.S. forest and agriculture sectors in support of a renewable electricity standard," Energy Policy, Elsevier, vol. 58(C), pages 64-74.
    16. Buongiorno, Joseph & Zhu, Shushuai, 2013. "Consequences of carbon offset payments for the global forest sector," Journal of Forest Economics, Elsevier, vol. 19(4), pages 384-401.
    17. Caurla, Sylvain & Bertrand, Vincent & Delacote, Philippe & Le Cadre, Elodie, 2018. "Heat or power: How to increase the use of energy wood at the lowest cost?," Energy Economics, Elsevier, vol. 75(C), pages 85-103.
    18. Moiseyev, Alexander & Solberg, Birger & Kallio, A. Maarit I., 2013. "Wood biomass use for energy in Europe under different assumptions of coal, gas and CO2 emission prices and market conditions," Journal of Forest Economics, Elsevier, vol. 19(4), pages 432-449.
    19. Johnston, Craig M.T. & Cornelis van Kooten, G., 2015. "Back to the past: Burning wood to save the globe," Ecological Economics, Elsevier, vol. 120(C), pages 185-193.
    20. Miguel Riviere & Sylvain Caurla, 2020. "Representations of the Forest Sector in Economic Models [Les représentations du secteur forestier dans les modèles économiques]," Post-Print hal-03088084, HAL.

    More about this item

    Keywords

    Renewable electricity; Bioenergy Forest sector modeling; Land-use change;
    All these keywords.

    JEL classification:

    • C61 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Optimization Techniques; Programming Models; Dynamic Analysis
    • Q23 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Renewable Resources and Conservation - - - Forestry
    • Q42 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Alternative Energy Sources
    • Q58 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Environmental Economics: Government Policy

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:foreco:v:19:y:2013:i:4:p:361-383. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/701775/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.