Nothing Special   »   [go: up one dir, main page]

IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v52y2013icp819-831.html
   My bibliography  Save this article

Innovation in the U.S. building sector: An assessment of patent citations in building energy control technology

Author

Listed:
  • Altwies, Joy E.
  • Nemet, Gregory F.
Abstract
Buildings are crucial to addressing energy problems because they are large consumers of end-use energy, and potential exists to dramatically improve their efficiencies. However, the pace of innovation in buildings is generally characterized as inadequate, despite the implementation of an array of policy instruments aimed at promoting efficiency. The literature on innovation in the building industry provides several explanations including: fragmented decision-making, principal agent problems, inadequate information, and limited learning across heterogeneous projects. We investigate the innovation process for buildings in the U.S. with a case study of patenting in energy management control systems (EMCS) for commercial buildings and programmable thermostats (PT) for residential buildings. Using U.S. patent data, we find that: (1) patenting activity peaked around 1980, subsequently declined, and then increased considerably in the past decade; (2) commercial, rather than residential, buildings account for the recent increase; and (3) building control technologies have benefitted from inventions originating outside the industry, notably from electronics and computers, with a shift toward the latter in recent years.

Suggested Citation

  • Altwies, Joy E. & Nemet, Gregory F., 2013. "Innovation in the U.S. building sector: An assessment of patent citations in building energy control technology," Energy Policy, Elsevier, vol. 52(C), pages 819-831.
  • Handle: RePEc:eee:enepol:v:52:y:2013:i:c:p:819-831
    DOI: 10.1016/j.enpol.2012.10.050
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301421512009354
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.enpol.2012.10.050?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lund, P.D., 2007. "Effectiveness of policy measures in transforming the energy system," Energy Policy, Elsevier, vol. 35(1), pages 627-639, January.
    2. Kenneth Gillingham & Richard G. Newell & Karen Palmer, 2009. "Energy Efficiency Economics and Policy," Annual Review of Resource Economics, Annual Reviews, vol. 1(1), pages 597-620, September.
    3. Brown, Marilyn A., 2001. "Market failures and barriers as a basis for clean energy policies," Energy Policy, Elsevier, vol. 29(14), pages 1197-1207, November.
    4. Nemet, Gregory F. & Kammen, Daniel M., 2007. "U.S. energy research and development: Declining investment, increasing need, and the feasibility of expansion," Energy Policy, Elsevier, vol. 35(1), pages 746-755, January.
    5. Bronwyn H. Hall & Adam B. Jaffe & Manuel Trajtenberg, 2001. "The NBER Patent Citation Data File: Lessons, Insights and Methodological Tools," NBER Working Papers 8498, National Bureau of Economic Research, Inc.
    6. Zvi Griliches, 1998. "Patent Statistics as Economic Indicators: A Survey," NBER Chapters, in: R&D and Productivity: The Econometric Evidence, pages 287-343, National Bureau of Economic Research, Inc.
    7. Manuel Trajtenberg, 1990. "A Penny for Your Quotes: Patent Citations and the Value of Innovations," RAND Journal of Economics, The RAND Corporation, vol. 21(1), pages 172-187, Spring.
    8. Dieperink, Carel & Brand, Iemy & Vermeulen, Walter, 2004. "Diffusion of energy-saving innovations in industry and the built environment: Dutch studies as inputs for a more integrated analytical framework," Energy Policy, Elsevier, vol. 32(6), pages 773-784, April.
    9. David Popp, 2005. "They Don't Invent Them Like They Used To: An Examination of Energy Patent Citations Over Time," NBER Working Papers 11415, National Bureau of Economic Research, Inc.
    10. Clarke, Joseph A. & Johnstone, Cameron M. & Kelly, Nicolas J. & Strachan, Paul A. & Tuohy, Paul, 2008. "The role of built environment energy efficiency in a sustainable UK energy economy," Energy Policy, Elsevier, vol. 36(12), pages 4605-4609, December.
    11. Bronwyn H. Hall & Adam Jaffe & Manuel Trajtenberg, 2005. "Market Value and Patent Citations," RAND Journal of Economics, The RAND Corporation, vol. 36(1), pages 16-38, Spring.
    12. Nils Kok & Marquise McGraw & John Quigley, 2012. "The diffusion over time and space of energy efficiency in building," The Annals of Regional Science, Springer;Western Regional Science Association, vol. 48(2), pages 541-564, April.
    13. Dixon, Robert K. & McGowan, Elizabeth & Onysko, Ganna & Scheer, Richard M., 2010. "US energy conservation and efficiency policies: Challenges and opportunities," Energy Policy, Elsevier, vol. 38(11), pages 6398-6408, November.
    14. Nick Johnstone & Ivan Haščič & David Popp, 2010. "Renewable Energy Policies and Technological Innovation: Evidence Based on Patent Counts," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 45(1), pages 133-155, January.
    15. repec:fth:harver:1473 is not listed on IDEAS
    16. Dietmar Harhoff & Francis Narin & F. M. Scherer & Katrin Vopel, 1999. "Citation Frequency And The Value Of Patented Inventions," The Review of Economics and Statistics, MIT Press, vol. 81(3), pages 511-515, August.
    17. Geller, Howard & Harrington, Philip & Rosenfeld, Arthur H. & Tanishima, Satoshi & Unander, Fridtjof, 2006. "Polices for increasing energy efficiency: Thirty years of experience in OECD countries," Energy Policy, Elsevier, vol. 34(5), pages 556-573, March.
    18. Popp, David, 2005. "Lessons from patents: Using patents to measure technological change in environmental models," Ecological Economics, Elsevier, vol. 54(2-3), pages 209-226, August.
    19. Grant D. Jacobsen & Matthew J. Kotchen, 2013. "Are Building Codes Effective at Saving Energy? Evidence from Residential Billing Data in Florida," The Review of Economics and Statistics, MIT Press, vol. 95(1), pages 34-49, March.
    20. Jaffe, Adam B. & Newell, Richard G. & Stavins, Robert N., 2005. "A tale of two market failures: Technology and environmental policy," Ecological Economics, Elsevier, vol. 54(2-3), pages 164-174, August.
    21. Hunt Allcott & Michael Greenstone, 2012. "Is There an Energy Efficiency Gap?," Journal of Economic Perspectives, American Economic Association, vol. 26(1), pages 3-28, Winter.
    22. Jackson, Jerry, 2010. "Promoting energy efficiency investments with risk management decision tools," Energy Policy, Elsevier, vol. 38(8), pages 3865-3873, August.
    23. Salter, Ammon & Gann, David, 2003. "Sources of ideas for innovation in engineering design," Research Policy, Elsevier, vol. 32(8), pages 1309-1324, September.
    24. Noailly, Joëlle & Batrakova, Svetlana, 2010. "Stimulating energy-efficient innovations in the Dutch building sector: Empirical evidence from patent counts and policy lessons," Energy Policy, Elsevier, vol. 38(12), pages 7803-7817, December.
    25. Nemet, Gregory F., 2009. "Demand-pull, technology-push, and government-led incentives for non-incremental technical change," Research Policy, Elsevier, vol. 38(5), pages 700-709, June.
    26. Byrne, John & Hughes, Kristen & Rickerson, Wilson & Kurdgelashvili, Lado, 2007. "American policy conflict in the greenhouse: Divergent trends in federal, regional, state, and local green energy and climate change policy," Energy Policy, Elsevier, vol. 35(9), pages 4555-4573, September.
    27. Page Kyle, Leon Clarke, Steven J. Smith, Son Kim, Mayda Nathan, and Marshall Wise, 2011. "The Value of Advanced End-Use Energy Technologies in Meeting U.S. Climate Policy Goals," The Energy Journal, International Association for Energy Economics, vol. 0(Special I).
    28. Anin Aroonruengsawat, Maximilian Auffhammer, and Alan H. Sanstad, 2012. "The Impact of State Level Building Codes on Residential Electricity Consumption," The Energy Journal, International Association for Energy Economics, vol. 0(Number 1).
    29. Kiss, Bernadett & Neij, Lena, 2011. "The importance of learning when supporting emergent technologies for energy efficiency - A case study on policy intervention for learning for the development of energy efficient windows in Sweden," Energy Policy, Elsevier, vol. 39(10), pages 6514-6524, October.
    30. Ryghaug, Marianne & Sørensen, Knut H., 2009. "How energy efficiency fails in the building industry," Energy Policy, Elsevier, vol. 37(3), pages 984-991, March.
    31. Gann, David M. & Salter, Ammon J., 2000. "Innovation in project-based, service-enhanced firms: the construction of complex products and systems," Research Policy, Elsevier, vol. 29(7-8), pages 955-972, August.
    32. Greene, David L., 2011. "Uncertainty, loss aversion, and markets for energy efficiency," Energy Economics, Elsevier, vol. 33(4), pages 608-616, July.
    33. Nemet, Gregory F. & Johnson, Evan, 2012. "Do important inventions benefit from knowledge originating in other technological domains?," Research Policy, Elsevier, vol. 41(1), pages 190-200.
    34. Dounis, A.I. & Caraiscos, C., 2009. "Advanced control systems engineering for energy and comfort management in a building environment--A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(6-7), pages 1246-1261, August.
    35. Ravetz, Joe, 2008. "State of the stock--What do we know about existing buildings and their future prospects?," Energy Policy, Elsevier, vol. 36(12), pages 4462-4470, December.
    36. Martin Sexton & Peter Barrett, 2003. "A literature synthesis of innovation in small construction firms: insights, ambiguities and questions," Construction Management and Economics, Taylor & Francis Journals, vol. 21(6), pages 613-622.
    37. Sanya Carley, 2011. "The Era of State Energy Policy Innovation: A Review of Policy Instruments," Review of Policy Research, Policy Studies Organization, vol. 28(3), pages 265-294, May.
    38. Nemet, Gregory F., 2012. "Inter-technology knowledge spillovers for energy technologies," Energy Economics, Elsevier, vol. 34(5), pages 1259-1270.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Eunji Kim & Yoonhee Ha, 2021. "Vitalization Strategies for the Building Energy Management System (BEMS) Industry Ecosystem Based on AHP Analysis," Energies, MDPI, vol. 14(9), pages 1-16, April.
    2. Venugopalan, Subhashini & Rai, Varun, 2015. "Topic based classification and pattern identification in patents," Technological Forecasting and Social Change, Elsevier, vol. 94(C), pages 236-250.
    3. Asaee, S. Rasoul & Sharafian, Amir & Herrera, Omar E. & Blomerus, Paul & Mérida, Walter, 2018. "Housing stock in cold-climate countries: Conversion challenges for net zero emission buildings," Applied Energy, Elsevier, vol. 217(C), pages 88-100.
    4. Guan, Jiancheng & Liu, Na, 2015. "Invention profiles and uneven growth in the field of emerging nano-energy," Energy Policy, Elsevier, vol. 76(C), pages 146-157.
    5. Inchae Park & Keeeun Lee & Byungun Yoon, 2015. "Exploring Promising Research Frontiers Based on Knowledge Maps in the Solar Cell Technology Field," Sustainability, MDPI, vol. 7(10), pages 1-30, October.
    6. WANG, La-yin & ZHAO, Dong, 2021. "Cross-domain function analysis and trend study in Chinese construction industry based on patent semantic analysis," Technological Forecasting and Social Change, Elsevier, vol. 162(C).
    7. Ruparathna, Rajeev & Hewage, Kasun & Sadiq, Rehan, 2016. "Improving the energy efficiency of the existing building stock: A critical review of commercial and institutional buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 1032-1045.
    8. Ke Li & Boqiang Lin & Xiying Liu, 2015. "Special: Theme of Clean Coal How Policy Strategies Affect Clean Coal Technology Innovation in China? A Patent-Based Approach," Energy & Environment, , vol. 26(6-7), pages 1015-1033, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Joëlle Noailly & Victoria Shestalova, 2013. "Knowledge spillovers from renewable energy technologies, Lessons from patent citations," CPB Discussion Paper 262, CPB Netherlands Bureau for Economic Policy Analysis.
    2. Joelle Noailly & Victoria Shestalova, 2013. "Knowledge Spillovers from Renewable energy Technologies, Lessons from patent citations," CIES Research Paper series 22-2013, Centre for International Environmental Studies, The Graduate Institute.
    3. Albino, Vito & Ardito, Lorenzo & Dangelico, Rosa Maria & Messeni Petruzzelli, Antonio, 2014. "Understanding the development trends of low-carbon energy technologies: A patent analysis," Applied Energy, Elsevier, vol. 135(C), pages 836-854.
    4. Nemet, Gregory F., 2012. "Inter-technology knowledge spillovers for energy technologies," Energy Economics, Elsevier, vol. 34(5), pages 1259-1270.
    5. Martin Kalthaus, 2020. "Knowledge recombination along the technology life cycle," Journal of Evolutionary Economics, Springer, vol. 30(3), pages 643-704, July.
    6. Costantini, Valeria & Crespi, Francesco & Palma, Alessandro, 2017. "Characterizing the policy mix and its impact on eco-innovation: A patent analysis of energy-efficient technologies," Research Policy, Elsevier, vol. 46(4), pages 799-819.
    7. Valeria Costantini & Francesco Crespi & Alessandro Palma, 2015. "Characterizing the policy mix and its impact on eco-innovation in energy-efficient technologies," SEEDS Working Papers 1115, SEEDS, Sustainability Environmental Economics and Dynamics Studies, revised Jun 2015.
    8. Gianluca ORSATTI, 2019. "Public R&D and green knowledge diffusion:\r\nEvidence from patent citation data," Cahiers du GREThA (2007-2019) 2019-17, Groupe de Recherche en Economie Théorique et Appliquée (GREThA).
    9. Keijl, S. & Gilsing, V.A. & Knoben, J. & Duysters, G., 2016. "The two faces of inventions: The relationship between recombination and impact in pharmaceutical biotechnology," Research Policy, Elsevier, vol. 45(5), pages 1061-1074.
    10. Fernández, Ana María & Ferrándiz, Esther & Medina, Jennifer, 2022. "The diffusion of energy technologies. Evidence from renewable, fossil, and nuclear energy patents," Technological Forecasting and Social Change, Elsevier, vol. 178(C).
    11. Plank, Josef & Doblinger, Claudia, 2018. "The firm-level innovation impact of public R&D funding: Evidence from the German renewable energy sector," Energy Policy, Elsevier, vol. 113(C), pages 430-438.
    12. Valeria Costantini & Francesco Crespi & Alessandro Palma, 2014. "Policy Inducement Effects in Energy Efficiency Technologies. An Empirical Analysis on the Residential Sector," SEEDS Working Papers 1914, SEEDS, Sustainability Environmental Economics and Dynamics Studies, revised Aug 2014.
    13. Nemet, Gregory F. & Johnson, Evan, 2012. "Do important inventions benefit from knowledge originating in other technological domains?," Research Policy, Elsevier, vol. 41(1), pages 190-200.
    14. Guan-Can Yang & Gang Li & Chun-Ya Li & Yun-Hua Zhao & Jing Zhang & Tong Liu & Dar-Zen Chen & Mu-Hsuan Huang, 2015. "Using the comprehensive patent citation network (CPC) to evaluate patent value," Scientometrics, Springer;Akadémiai Kiadó, vol. 105(3), pages 1319-1346, December.
    15. Emanuele Bacchiocchi & Fabio Montobbio, 2010. "International Knowledge Diffusion and Home‐bias Effect: Do USPTO and EPO Patent Citations Tell the Same Story?," Scandinavian Journal of Economics, Wiley Blackwell, vol. 112(3), pages 441-470, September.
    16. Yi Deng, 2005. "The Value of Knowledge Flows: Evidence from Patent Citations Data," Computing in Economics and Finance 2005 374, Society for Computational Economics.
    17. Wang, Xun, 2022. "Capital account liberalization, financial dependence and technological innovation: Cross-country evidence," Journal of Banking & Finance, Elsevier, vol. 145(C).
    18. Toivanen, Otto & Väänänen, Lotta, 2010. "Returns to Inventors," CEPR Discussion Papers 7744, C.E.P.R. Discussion Papers.
    19. Raphael Calel & Antoine Dechezleprêtre, 2016. "Environmental Policy and Directed Technological Change: Evidence from the European Carbon Market," The Review of Economics and Statistics, MIT Press, vol. 98(1), pages 173-191, March.
    20. Gerald A. Carlino & Robert M. Hunt, 2009. "What explains the quantity and quality of local inventive activity?," Working Papers 09-12, Federal Reserve Bank of Philadelphia.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:52:y:2013:i:c:p:819-831. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/enpol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.